Balscadden Development, Howth, Co. Dublin

Geotechnical Report

Balscadden GP3 Ltd.

Report No. B1800-GEO-R001 21 March 2022 Revision 05

IRELAND UK UAE BAHRAIN KSA

Document Control

Document:	Geotechnical Report
Project:	Balscadden Development, Howth, Co. Dublin
Client:	Balscadden GP3 Ltd.
Report Number:	B1800-GEO-R001

Document Checking:

	/		Authorised		
Revision	Revision/ Review Date	Details of Issue	Prepared By	Checked By	Approved By
05	21 March 2022	Final	NP	MR	MR
04	16 March 2022	Information	NP	MR	MR
03	08 March 2022	Information	NP	MR	MR
02	21 February 2022	Draft	NP	MR	MR
01	04 February 2022	Draft	NP	MR	MR
00	08 November 2021	Draft	NP	РОВ	MR

Disclaimer: Please note that this report is based on specific information, instructions and information from our Client and should not be relied upon by third parties.

BYRNELOOBY

www.ByrneLooby.com

Contents

1	Intr	oduction	1
	1.1	Summary	1
	1.2	Limitations	1
	1.3	Layout of Report	2
	1.4	References Used	2
2	Site	Location, Description and Development History	3
	2.1	Site Location	3
	2.2	Site Description	4
3	Pro	posed Development	5
4	Gro	und Conditions	7
	4.1	Desk Study	7
	4.1.	1 Bedrock Geology	7
	4.1.	2 Quaternary Sediments	8
	4.1.	3 Historical Ground Investigations	9
	4.2	Site Specific Ground Investigations	.10
	4.2.	1 Site Investigations Ltd, Balscadden Howth – 2021	.10
	4.2.	2 Site Investigations Ltd, Balscadden Howth - 2017	. 11
	4.2.	3 Ground Investigations Ireland, Balscadden Howth – 2017	. 12
	4.2.	4 Site Investigations Ltd, Balscadden Howth - 2015	. 13
	4.3	Ground Conditions	. 13
	4.4	General Ground Profiles	. 14
	4.5	Groundwater	. 14
	4.6	Soil Testing	. 15
	4.6.	1 Standard Penetration Testing (SPT)	. 15
	4.6.	2 Particle Size Distribution Tests (PSDs)	. 19
	4.7	Characteristic Geotechnical Parameters	.20
5	Sou	Ithern Boundary Retaining Wall	.21
	5.1	Summary	.21
	5.2	Wall Sections	.22
	5.3	Pile Installation Level	.23
	5.4	Construction Sequence	.23
	5.5	Surcharge	.23

5.6	Su	
5.7	Gro	pundwater
5.8	Pile	e Wall Stiffness
5.9	Sta	Indards and Software25
5.10	Des	sign Limit States
5.11	UL	S Analysis Results
5.12	SLS	S Analysis Results
5.13	Gro	ound Movement Assessment
5.14	Ма	in Reinforcement
5.15	Мо	nitoring Methodology
5.	15.1	Vibration Monitoring
5.	15.2	Movement Monitoring29
6 W	estern	ا Boundary Retaining Wall
6.1	Sur	mmary
6.2	Wa	ll Sections
6.3	Pile	e Installation Level
6.4	Со	nstruction Sequence
6.5	Τοι	pography
6.6	Sur	rcharge
6.7	Sup	pport
6.8	Pil€	e Wall Stiffness
6.9	Sta	indards and Software
6.10	Des	sign Limit States
6.11	Gro	oundwater
6.12	UL	S Analysis Results
6.13	SLS	S Analysis Results
6.14	Ма	in Reinforcement
6.15	Мо	nitoring Methodology
6.	15.1	Vibration Monitoring
6.	15.2	Movement Monitoring37
7 No	orther	n Boundary Open Cut Excavation
7.1	Bao	ckground
7.2	Bas	sement Construction Works

7.3 Ground Movements	BYRNELOOBY
8 Building Impact Assessment Methodology	
8.1 Basis of Movement	
8.1.1 Mechanisms Explored	41
8.1.2 Software Used	41
8.2 Ground Movement Analysis	
8.2.1 Southern Elevation	
8.2.2 Western Elevation	
8.2.3 Northern Elevation	
8.3 Damage Impact Assessment	
8.3.1 Southern Elevation	
8.3.2 Western Elevation	
8.3.3 Northern Elevation	
9 Eastern Elevation Stabilisation Works	
9.1 Background	
9.2 Basis of Design	
9.3 Surcharge	50
9.4 Design Sections	
9.5 Soil Nail Parameters	51
9.5.1 Tensile Strength of Nails	51
9.5.2 Borehole Diameter	51
9.5.3 Bond Stress of Soil Nails	51
9.6 Analysis Results	
10 Howth Sewer Tunnel Assessment	55
10.1 Howth Sewer Description	55
10.2 Raft Foundations	
10.3 Stress Induced by Applied Loads	
11 Conclusion	
Appendix A – Designers Risk Assessment	A
Appendix B – Minerex Hydrogeological Assessment Rep	ortB
Appendix C – 2021 Ground Investigation	C
Appendix D – Drawings	D

1 Introduction

1.1 Summary

ByrneLooby have been requested by Balscadden GP3 Ltd. to provide geotechnical design services for the proposed development at Balscadden Road. The engineer for the scheme is Waterman Moylan Consulting Engineers.

These services include the specimen design of two embedded retaining walls, located along the southern and western elevations. The proposed solution for each of the retaining walls is a secant pile wall with an additional row of buttress piles installed on the southern elevation. The secant pile walls have been designed to serve the following purposes:

- A temporary works element to facilitate the construction of the basement/topographical changes by providing temporary lateral support, accommodating soil, groundwater and any temporary surcharge pressures;
- A permanent works element to support long term lateral soil and surcharge pressures.

The design requirements of the secant pile wall have been determined in accordance with the design principles of *IS EN 1997-1:2004 Eurocode 7: Geotechnical Design – Part 1: General Rules* and with respect to the Irish National Annex to this document which was published in 2005. Guidance, where relevant, will be sought from CIRIA C760 and the ICE Specification for Piling and Embedded Retaining Walls which are recognised by EC7 as non-conflicting complementary information (NCCI). The design of the secant pile walls is subject to construction detailed design.

Additional services include an assessment of ground movements and building impact assessments along the southern, western and northern elevation, where an open cut excavation is proposed to form the basement, an assessment of the change in stresses applied to an existing sewer that runs through the site and an assessment of recommended remedial works along the southeastern elevation. All of the above assessments and designs are subject to construction stage detailed design.

1.2 Limitations

The information, views and conclusions drawn concerning the site are based, in part, on information supplied to ByrneLooby by other parties. ByrneLooby have proceeded in good faith on the assumption that this information is accurate. ByrneLooby accepts no liability for any inaccurate conclusions, assumptions or actions taken resulting from any inaccurate information supplied to ByrneLooby by others.

The designs outlined in this report are subject to a construction detailed design in advance of the construction works.

All or part of this document may not be reproduced or be relied upon by any other party without prior and express written permission of ByrneLooby.

1.3 Layout of Report

As outlined above, this report has been produced to outline the geotechnical aspects of the proposed development.

The structure of this report corresponds to the various elements outlined above, and the key tasks summarised below:

- Section 4 describes the ground conditions at the site including a desk based study and a review of the various phases of ground investigation;
- Section 5 describes the design of the Southern Boundary Retaining Wall including a summary of ground movement predictions;
- Section 6 describes the design of the Western Boundary Retaining Wall including a summary of ground movement predictions;
- Section 7 describes the open cut excavation along the northern boundary, required to facilitate the construction of the Block B Basement;
- Section 8 describes the Building Impact Assessment completed on adjacent properties to the proposed Southern Boundary Embedded Retaining Wall, Western Boundary Embedded Retaining Wall and the Northern Boundary open cut excavation;
- Section 9 describes proposed remedial works along the eastern elevation;
- Section 10 covers an assessment of the proposed foundation loadings on the Howth Sewer Tunnel.

1.4 References Used

The following is a non-exhaustive list of technical guidance documentation used on the assessment:

- CIRIA C760 Guidance on Embedded Retaining Wall Design
- Burland, J.B., and Wroth, C.P. (1974) *Settlement of buildings and associated damage*, State of the art review. Conf on Settlement of Structures, Cambridge, Pentech Press, London
- Boscardin, M.D., and Cording, E.G., (1989). *Building response to excavation induced settlement*. J Geotech Eng, ASCE
- Burland, Standing J.R., and Jardine F.M. (eds) (2001), *Building response to tunnelling, case studies from construction of the Jubilee Line Extension London*, CIRIA Special Publication 200.

2 Site Location, Description and Development History

2.1 Site Location

The site is located between Abbey Street and Balscadden Road in Howth, as shown in Figure 2.1, in the north of Howth. The area surrounding the site is a mixture of residential and commercial premises.

Figure 2.1: Site Location (ref. Google Maps)

Balscadden Road is located to the east of the site and Balscadden Bay Beach is located to the east of this. Asgard Park, a residential development of two-storey developments, is located directly to the south of the site. Residential dwellings are located to the west of the site along Abbey Street. Martello Tower is located directly north of the site. North of this are a number of commercial premises on East Pier and north of this is Howth Pier.

2.2 Site Description

The site is partially developed with a former leisure centre and hardstanding area to the middle and north of the site.

There are significant topographical changes across the site, with the site sloping steeply from an elevation of approximately +20m OD across the site to approximately +35m OD to the rear of the sports hall. These topographical changes will require significant earthworks and retaining walls, the design of which are outlined in this report.

Additionally, the historical Howth Sewer Tunnel passes under the site.

Figure 2.2: Topographical Changes Across the site

3 Proposed Development

The proposed development relates to lands located to the south of the Martello Tower on Balscadden Road & the former Baily Court Hotel, Main Street, Howth, County Dublin. The development will consist of the demolition of existing structures on the proposed site including the disused sports building and the former Baily Court Hotel buildings and the construction of a residential development set out in 4 no. residential blocks, ranging in height from 2 to 5 storeys to accommodate 180 no. apartments with associated internal residential tenant amenity and external courtyards and roof terraces, 1 no. retail unit and 2 no. café/retail units. The site will accommodate car parking spaces at basement level and bicycle parking spaces at basement and surface level. Landscaping will include new linear plaza which will create a new pedestrian link between Main St and Balscadden Rd to include the creation of an additional 2 no. new public plazas and also maintains and upgrades the pedestrian link from Abbey Street to Balscadden Road below the Martello Tower. Please see the accompanying Statutory Notices for a more detailed description.

Table 3.1: Schedule of Accommodation						
Apartment Type	1 - Bed	2 - Bed	3 - Bed	Studio	Total	
Block A	-	2	-	-	2	
Block B	51	57	18	-	126	
Block C	8	28	7	-	43	
Block D	3	2	-	4	9	
Total	62	89	25	4	180	

The schedule of accommodation is set out in the Table below.

The proposed development and blocks are shown in Figure 3.1.

As shown in the Figure above, it is proposed to reduce ground levels throughout the site. To allow this, retaining walls will be required in the south and west of the site.

In the south of the site, ground level will be reduced from +35m OD to a SSL of +24.3m OD.

4 Ground Conditions

4.1 Desk Study

ByrneLooby have carried out a desk-based study to establish the quaternary and bedrock geology and the hydrogeology. The following sources were consulted during the desk-based study:

The Geological Survey of Ireland (GSI) online data set public viewer to find:

- Bedrock Map 1:100,000
- Quaternary Sediments Map
- Historical Ground Investigation

4.1.1 Bedrock Geology

The GSI generalised 1:100,000 bedrock map shown in Figure 4.1 identifies the bedrock at the north of the site to be The Ballysteen Formation, while the bedrock in the south of the site is identified as the Elsinore Formation. A fault runs through the site in an east to west direction.

The Ballysteen Formation is described as irregularly bedded and nodular bedded argillaceous limestones with calcareous shales, while the Elsinore Formation is described as a polymict melange of quartzite, greywacke, siltstone, mudstone and sandstone.

Figure 4.1: Bedrock Geology 1:100,000 Map (ref. GSI)

4.1.2 Quaternary Sediments

The GSI Quaternary Sediments map, Figure 4.2, identifies Gravels derived from Limestones throughout the site. The area to the south is identified as Till derived from Limestones and the area to the west is identified as Gravels derived from Lower Palaeozoic sandstones and shales.

Figure 4.2: Quaternary Sediments Map (ref. GSI)

4.1.3 Historical Ground Investigations

Consultation of the GSI website has been carried out to review historical exploratory holes carried out in the vicinity. This has been shown in Figure 4.3.

Figure 4.3: Historical SI

The boreholes completed on the site as part of the North Dublin Drainage Scheme encountered ground conditions comprising GRAVEL overlying CLAY overlying LIMESTONE Bedrock.

4.2 Site Specific Ground Investigations

The following site specific ground investigations carried out at the site have been made available to ByrneLooby for review:

- Site Investigations Ltd., Balscadden Howth, Dublin 13, Site Investigation (July 2021)
- Site Investigations Ltd., Balscadden Howth, Dublin 13, Site Investigation (November 2017)
- Ground Investigations Ireland., Balscadden Howth Ground Investigation Report (November 2017)
- Site Investigations Ltd., Howth Cluxton Site Investigation (July 2015)

4.2.1 Site Investigations Ltd, Balscadden Howth – 2021

Site Investigations Ltd. completed a ground investigation with fieldwork taking place in July 2021. The ground investigation consisted of:

- 3No. Cable Percussion Boreholes to a depth of 17.2m bgl;
- 3No. Trial Pits; and
- Geotechnical Laboratory Testing.

The exploratory hole plan is shown as Figure 4.4.

Figure 4.4: Site Investigation 2021 Exploratory Hole Plan

4.2.2 Site Investigations Ltd, Balscadden Howth - 2017

Site Investigations Ltd. completed a ground investigation with fieldwork taking place in September and October 2017. The ground investigation consisted of:

- 1No. Cable Percussion Borehole to a depth of 20m bgl; and
- Geotechnical Laboratory Testing.

The exploratory hole plan is shown as Figure 4.5.

Figure 4.5: Site Investigation 2017 Exploratory Hole Plan

4.2.3 Ground Investigations Ireland, Balscadden Howth - 2017

Ground Investigations Ireland completed a ground investigation with fieldwork taking place in November 2017. The ground investigation consisted of:

- 3No. Trial Pits
- 3No. Soakaways

The exploratory hole plan is shown as Figure 4.6.

Figure 4.6: Ground Investigations Ireland 2017 Exploratory Hole Plan

4.2.4 Site Investigations Ltd, Balscadden Howth - 2015

Site Investigations Ltd. completed a ground investigation with fieldwork taking place in July 2015. The ground investigation consisted of:

- 4No. Trial Pits
- 4No. Boreholes
- Geotechnical Laboratory Testing.

The exploratory hole plan is shown as Figure 4.7.

Figure 4.7: Site Investigation 2015 Exploratory Hole Plan

4.3 Ground Conditions

The ground conditions encountered during the ground investigations generally comprised Topsoil overlying medium dense SAND overlying very stiff CLAY. A 1.2m thick layer of stiff CLAY was encountered underlying the topsoil in BH-GDG-01 (Site Investigations 2017).

The medium dense SAND was described as medium dense silty very gravelly SAND with bands of sandy gravel. The very stiff CLAY was described as very stiff slightly sandy slightly gravelly silty CLAY.

Bedrock was not proven in any of the boreholes.

4.4 General Ground Profiles

The following ground profiles have been used as part of the design of the various elements.

Table 4.1: Design Ground Profile 1 – Southern Extents						
Strata	Depth (m bgl)	Elevation (m OD)	Thickness (m)			
Medium Dense SAND	0	+35.0*	19.5			
Very Stiff CLAY	19.5	+15.5	N/A			

*Ground Level varies

Table 4.2: Design Ground Profile 2 - Northern Extents

Strata	Depth (m bgl)	Elevation (m OD)	Thickness (m)
Loose to Medium Dense SAND/ GRAVEL	0	+20.0	6.0
Medium Dense SAND	6.0	+14.0	4.0
Very Stiff CLAY	10.0	+10.0	N/A

Table 4.3: Design Ground Profile 3 - Western Extents

Strata	Depth (m bgl)	Elevation (m OD)	Thickness (m)
Loose to Medium Dense SAND/ GRAVEL	0	+27.5	2.5
Medium Dense SAND	2.5	+25.0	12.0
Very Stiff CLAY	17.5	+10.0	N/A

4.5 Groundwater

Groundwater strikes were not encountered in any of the boreholes completed as part of the previous phases of investigation.

As part of the 2017 investigation, a groundwater installation was installed into BH-GDG-01 with four groundwater monitoring visits completed in October 2017. However, the installation was dry on each visit.

Minerex were engaged to prepare a Hydrogeological Assessment Report for the proposed development. This assessment included groundwater monitoring through a combination of manual measurements and continuous monitoring with the use of data loggers. As outlined in their report,

included as Appendix B, Borehole BH-GDG-01 was dry throughout the monitoring period. The recorded groundwater levels in BH01 and BH02 are shown as Figure 4.8.

Figure 4.8: Groundwater Monitoring

Based on the above groundwater monitoring, a conservative groundwater level of 12m OD has been proposed as a design groundwater level.

Further information regarding groundwater levels can be found in Appendix B.

4.6 Soil Testing

4.6.1 Standard Penetration Testing (SPT)

The SPT 'N' values have been plotted against elevation. These have been split out into two separate plots based on the topographical changes across the site and are shown in Figure 4. and Figure 4... The characteristic soil parameters can be estimated by correlating the SPT 'N' values recorded in the boreholes with various soil parameters, based on published relationships.

Figure 4.9: SPT Data - Southern Elevation

Figure 4.10: SPT Data - Northern Elevation

The following correlations were made:

- The internal angle of friction of the granular materials can be calculated after the relationship published by Peck, with Figure 4. below detailing Peck's relationship between SPT 'N' values and the angle of shearing resistance.
- The undrained shear strength of the cohesive material can be calculated based on the Stroud correlation, $C_u = f_1N$, shown in Figure 4.. The parameter f_1 is related to the plasticity index of the material. In the absence of Atterberg limit tests, f_1 is to be taken as 5.
- The stiffness of cohesive soils can also be approximated using relationships as set out in CIRIA C760. The soil stiffness modulus is based on $600 \times C_u$ for the undrained case and 66% of this value for the drained case. For granular soils, the stiffness has been taken as $2000 \times 'N'$.

Figure 4.11: Peck's Relationship between SPT 'N' and angle of Shearing Resistance

Figure 4.8: Stroud's (1975) Relationship between SPT 'N' and undrained shear strength.

4.6.2 Particle Size Distribution Tests (PSDs)

A series of particle size distribution tests were completed as part of the various phases of investigation. The results of the tests are summarised in Figure 4.9.

Figure 4.9: Particle Size Distribution Test Results

4.7 Characteristic Geotechnical Parameters

Based on the interpretation of the above ground investigation data, the following characteristic geotechnical parameters have been calculated and used in the subsequent analysis.

Strata	SPT 'N'	γ (kN/m³)	φ' (Degrees)	c' (kPa)	c _u (kPa)	E' (MPa)	Eu (MPa)
Medium Dense SAND 1	18	18	32	-	-	35	-
Medium Dense SAND 2	25	18	34	-	-	50	-
Very Stiff CLAY 1	40	19	38	-	200	80	120
Very Stiff CLAY 2	50	19	38	-	250	100	150

Table 4.4:	Characteristic	Geotechnical	Parameters
1 4 5 10 11 11	cillaracteristic	ococcenticat	i urumeters

5 Southern Boundary Retaining Wall

5.1 Summary

Based on significant elevation changes across the site, a retaining wall will be required along the southern elevation. An indicative section is shown as Figure 5.1 and proposed layout shown as Figure 5.2. The proposed retaining wall solution is a secant pile wall with additional buttress piles installed to the rear of the secant pile wall to limit pile wall deflections.

The secant pile wall is to be supported in the permanent condition by the ground floor slab. Although a step is shown in the below section, it is understood that the slab will be continuous from Block C at a level of +24.3mOD. In the temporary condition raking props will be installed. The SSL of the basement slab is +24.3m OD and is 500mm thick. Based on this the design has been based on a formation level of +23.7m OD.

The basement of Block C is to be formed by additional temporary works such as an embedded retaining wall. This is to be completed rather than an open cut excavation so as to maintain the passive resistance of the secant pile wall. The proposed offset from the secant pile wall to the Block C basement is in the order of 15m.

Figure 5.1: Southern Boundary Indicative Section

Figure 5.2: Proposed Secant Pile Wall Layout

5.2 Wall Sections

The secant pile wall has been designed based on the following pile arrangement, in a hard-firm pile arrangement:

- 1,200mm diameter reinforced male piles, installed at 1,500mm centres;
- 1,200mm diameter unreinforced female piles, installed at 1,500mm centres;
- 1,200mm diameter reinforced buttress piles, installed at 4,500mm centres offset at 3m from the secant pile wall.

The buttress piles have been modelled as being connected with the secant pile wall by a capping beam (with fixity against rotation at the pile heads). The buttress piles act in tension and bending to limit the lateral movement of the secant pile wall.

The ground level along the secant pile wall elevation varies to a maximum level of approximately +35m OD. Based on this, one wall section has been analysed based on the maximum retained height (11.3m in the temporary case). Where the ground level reduces along the west of the wall, a refinement of the design may be completed during the detailed construction design, which will reduce the number of buttress piles.

5.3 Pile Installation Level

The secant pile wall is to be installed from existing ground levels (approximately +35m OD). A suitable piling platform and access to the piling locations will need to be constructed in advance of piling works. This level will be stepped where ground level reduces along the secant pile wall alignment.

5.4 Construction Sequence

The following construction sequence has been modelled in the design of the secant pile wall section for the southern elevation:

- 1. Construct piling platform and form suitable access for piling rig;
- 2. Install buttress piles;
- 3. Install female unreinforced secant piles to design toe lengths;
- 4. Install male reinforced secant and buttress piles to design toe lengths;
- 5. Complete initial excavation and construct capping beam;
- 6. Excavate to underside of temporary prop;
- 7. Install temporary raking prop and construct thrust blocks;
- 8. Excavate to formation;
- 9. Install additional temporary works and construct basement;
- 10. Construct ground floor slab extending to secant pile wall;
- 11. Remove temporary raking prop, following approval from structural engineer;
- 12. Construct crib wall or architectural feature in front of secant pile wall.

Please note the crib wall (or architectural feature) is proposed for architectural purposes and is not designed to provide any additional passive restraint.

5.5 Surcharge

A uniformly distributed variable load of 10kPa over the entire ground surface from the rear face of the retaining wall has been adopted. As per CIRIA C760, this accounts for normal vehicle traffic and for plant up to 30 tonne loaded weight, and is considered conservative.

An additional load case has been carried out to assess the condition whereby the adjacent properties have constructed a development at the end of their gardens in the long-term conditions, within 10m of the secant pile wall. This has been modelled as a strip load over a foundation width of 1m and a load of 100kN/m².

However, based on the results the load case where the 10kPa UDL is applied is considered the most onerous case.

5.6 Support

The analysis has been based on a temporary prop being installed at an elevation of +32.5m OD. Following excavation to formation, it is proposed to extend the ground floor slab to support the secant pile wall in the permanent condition. The ground floor slab is shown at an elevation of +24.3m OD.

Following the construction of the secant pile wall, an architectural wall, crib wall or gabion wall etc, is to be constructed in front of the piles. The additional benefit of this support has not been considered in the design of the secant pile wall.

5.7 Groundwater

Based on the findings of the hydrogeological assessment, completed by Minerex, a groundwater level of 12m OD has been used in the analysis.

As per CIRIA C760, when determining groundwater pressures the designer should check the following have also been considered:

• Change to water pressures due to long term climatic variations

Additionally, the designer should determine water pressures representing the most unfavourable values, which could occur in:

• Extreme or accidental circumstances at each of the wall's construction sequence and throughout its design life. An example of an extreme or accidental event may be a burst water main close to the wall.

To account for the above cases, the following measures have been included in the design:

- Firm piles to only extend to 1m below formation. This will allow groundwater flow between the male piles below formation.
- Construction of weep holes through the female piles. Weep holes are to consist of pipes (typically 50mm diameter) through an enlarged opening (in the order of 90mm diameter), with the annulus sealed. A filter stocking is to be installed around the pipe to prevent any migration of fines which could cause additional settlement.

In the analysis, groundwater has been taken as +12m OD. An accidental case, whereby groundwater rises to +22m OD and a minimum equivalent fluid pressure (MEFP) over the full height of the wall has also been considered in the long-term stage (ie. Following construction of slab).

5.8 Pile Wall Stiffness

The stiffness of the pile wall is calculated based on the recommendations provided within CIRIA C760, from the formula K=0.7 x (EI/s) for the short-term stiffness per meter of the wall.

E is the short-term young's modulus of concrete, taken as 30×10^6 kN/m² for the hard piles and 20×10^6 kN/m² for the firm piles (for C8/10 concrete). I is the second moment of area of the piles and s is the centre to centre spacing of the piles. The factor of 0.7 accounts for shrinkage and cracking of the concrete over a short-term period. A factor of 0.5 accounts for the long-term shrinking and cracking effect.

Wall Type	Pile Type	Design Short Term El (kNm²/m)	Design Long Term El (kNm²/m)
Southern Boundary Secant Pile Wall	1,200mm Hard Piles @ 1,500mm c/c	1,425,026	1,017,876
	1,200mm Firm Piles @ 1,500mm c/c	64,960	-
	1,200mm Hard Piles @4,500mm c/c (Buttress)	475,009	339,292
	Combined Stiffness per m run	1,964,995	1,357,168

The calculated stiffness values are shown in Table 5.1.

5.9 Standards and Software

The geotechnical design of the retaining wall has been carried out in accordance with IS EN 1997-1:2005 Eurocode 7: Geotechnical design – Part 1: General Rules and with respect to the Irish National Annex to this document (INA-EC7), which was published in 2007. The recommendations of CIRIA C760 are also considered. The structural design has been carried out in accordance with IS EN 1992-1-1:2005 and the Irish National Annex.

The Oasys software package FREW has been used to calculate the required minimum toe level and loads of the piled wall. A finite element model analysis has been carried out using the Plaxis 2D software to calculate expected displacements.

The adjacent basement excavation (to be constructed with additional temporary works) has been modelled conservatively in FREW as a sloped batter from the initial excavation level, while in Plaxis the additional temporary works have been modelled as sheet piles to account for any reduction in passive resistance.

5.10 Design Limit States

An Ultimate Limit State (ULS) design has been completed in accordance with IS EN 1997 to assess the stability and loads on the wall. Calculations for Design Approach 1 Combination 1 and Design Approach 1 Combination 2 have been completed as allowed in the Irish National Annex. A serviceability limit state (SLS) analysis has also been carried out to assess likely wall deflections. The following partial factors have been applied as outlined in Table 5.2.

Table 5.2; ECT Loading Combination and Partial Factors			
Limit State / Parameter	ULS C1 Analysis	ULS C2 Analysis	SLS Analysis
Angle of Friction (applied to tan $\varphi^{\prime})$	1.00	1.25	1.00
Effective Cohesion	1.00	1.25	1.00
Undrained Shear Strength	1.00	1.40	1.00
Soil Stiffness	1.00	1.00	1.00
Reduction in Level of Resisting Ground	Excluded*	Excluded*	Excluded
Passive Softening	Excluded	Excluded	Excluded
Factor on Effects of Surcharge (Variable) Actions	1.11	1.30	N/A
Factor on Effects of Soil and Water Actions	1.35	1.00	N/A

Table 5.2: EC7 Loading	Combination and Pa	artial Factors

*No allowance for overdig has been included in the ULS analysis. As a result, careful management of the excavation works by the contractor will be required.

5.11 ULS Analysis Results

The results of the ULS analysis are summarised in Table 5.3.

Table 5.3: ULS Analysis Results					
Wall Type	Pile Bending Moment (kNm/m Run)		Pile Shear Force (kN/m Run)		Min. Male Pile Toe Level for
E	ULS C1 Bending	ULS C2 Bending	ULS C1 Shear	ULS C2 Shear	Stability (m OD)
Southern Boundary Secant Pile Wall	1,453	1,430	385	383	17.0

5.12 SLS Analysis Results

A SLS analysis has been completed using the Finite Element Analysis software Plaxis 2D. The results of the short term analysis are shown as Figure 5.3 and Figure 5.4, with the long term analysis shown in Figure 5.5 and Figure 5.6, which shows pile head movement of less than 40mm.

Figure 5.3: Southern Elevation Short Term Horizontal Movement

Figure 5.4: Southern Elevation Short Term Vertical Movement

5.13 Ground Movement Assessment

An assessment of the ground movements and a building damage assessment has been carried out and is outlined in Section 9.

5.14 Main Reinforcement

ByrneLooby have carried out an assessment of the required main reinforcement in accordance with IS EN 1992-1-1:2004, based on the bending moments detailed above. This has calculated that a minimum area of steel of 1.3% for the secant piles and 1.3% for the buttress piles.

The above assessment is considered conservative and may be refined during the construction detailed design.

5.15 Monitoring Methodology

Movement and vibration monitoring shall be implemented for the works as follows:

5.15.1 Vibration Monitoring

The use of a secant pile wall with installation by CFA/Bored piling techniques has the advantage over sheet pile installation as vibration of the sheet piles can cause densification of coarse-grained soils close to the piles which in turn can cause ground surface settlement.

Vibration monitoring will be completed during the pile installation for the duration of the piling works. A pre-determined limit will trigger an alarm alerting the site team and stopping the works. An investigation can then take place to determine what activity caused the levels of vibration to exceed the safe limit. Safeguarding measures can then be implemented to permit the work to progress again safely. A vibration monitoring and inspection plan will be drawn up and implemented at construction stage.

5.15.2 Movement Monitoring

A movement monitoring and inspection plan will be drawn up and implemented at construction stage. It is important to combine a number of techniques to achieve a robust monitoring strategy. The processes recommended include inclinometers and target surveying.

Inclinometers measure the lateral displacement of the piles with a number of inclinometers installed along the wall alignment. An initial set of baseline readings are recorded prior to the excavation works commencing. The movement of the piles relative to the baseline reading is then measured as the excavation progresses.

Target points will also be set up on the piles to monitor the movement as the excavation works progress.

Additionally, settlement monitoring is recommended on the retained side of the wall. A suitable number of settlement points will be regularly monitored to monitor any movement that takes place. It is recommended that settlement monitoring points are extended to all site boundaries adjacent to the secant pile wall.

Trigger limits are to be set for the wall movement with an action plan and contingency measures proposed should the movements exceed the trigger limits. The proposed trigger limits and contingency measures are outlined in Table 5.4 and Table 5.5 and are based on the various stages of the construction sequence.

Trigger	Pile Head Movement	Action
Green	<18mm	No Action Required. Proceed with proposed construction sequence.
Amber	<22mm	Contact engineer. Frequency of monitoring to be increased.
Red	>26mm	Contact engineer immediately. Works to be suspended. Contingency Plan to be implemented and construction sequence may need amendment.

Table 5.4: Identification of Trigger Levels - Excavate to Formation (Prior to Temp. Prop Removal)

Table 5.5: Identification of Trigger Levels - Following Removal of Temp. Prop

Trigger	Movement	Action
Green	<28mm	No Action Required
Amber	>32mm	Contact engineer. Frequency of monitoring to be increased.
Red	>36mm	Contact engineer immediately. Works to be suspended. Contingency Plan to be implemented.

6 Western Boundary Retaining Wall

6.1 Summary

Based on elevation changes, a retaining wall will be required along the western elevation, directly adjacent to the site boundary. An indicative section is shown as Figure 6.1. The proposed wall solution is a secant pile wall.

The secant pile wall is to be supported in the permanent condition by the basement, first floor and second floor slabs. The SSL for the basement slab is +18.0m OD and is 850mm thick. Based on this the design has been based on a formation level of +17m OD. The wall will be support in the temporary condition, until the permanent works have been constructed, by temporary propping.

Figure 6.1: Western Boundary Indicative Section

6.2 Wall Sections

The secant pile wall will consist of the following pile arrangement, in a hard-firm pile arrangement:

- 900mm diameter reinforced male piles, installed at 1,300mm centres;
- 900mm diameter unreinforced female piles, installed at 1,300mm centres.

The ground level along the secant pile wall elevation varies to a maximum level of approximately +27.5m OD. Based on this, one wall section has been analysed based on the maximum retained height (11.5m in the temporary case). Where the ground level reduces along the north of the wall, a refinement of the design may be completed during the detailed construction design.

6.3 Pile Installation Level

The secant pile wall is to be installed from existing ground levels (approximately +27.5m OD). This level may reduce along the northern section of the secant pile wall run. A suitable piling platform and access to the piling locations is to be constructed in advance of piling works.
6.4 Construction Sequence

The following construction sequence has been modelled in the design of the secant pile wall for the western elevation:

- 1. Construct piling platform and form suitable access for piling rig;
- 2. Install female unreinforced secant piles to design toe lengths;
- 3. Install male reinforced secant piles to design toe lengths;
- 4. Complete initial excavation;
- 5. Install temporary raking prop and construct thrust blocks;
- 6. Excavate to formation;
- 7. Construct Basement Raft slab at +18m OD;
- 8. Construct first floor slab at 24.3m OD;
- 9. Remove temporary raking prop;
- 10. Construct second floor slab at 27.3m OD.

Alternatively, the secant pile wall could be back propped with temporary propping following construction of the basement raft slab, to allow removal of the upper temporary prop prior to the construction of the first floor slab at 24.3m OD.

6.5 Topography

The ground level on the retained side reduces to a retaining wall with a top of wall level of approximately +25.5m OD. The retaining wall is located directly adjacent to an existing single storey building. This change in slope on the retained side has been modelled as a surcharge.

6.6 Surcharge

An existing single storey building is located adjacent to the proposed secant pile wall at an offset of approximately 2m. The building has been modelled as having strip footings which have been modelled as having a UDL of 50kN/m² spread over a foundation width of 0.6m.

Additionally, a surcharge has been applied to the wall to account for the sloping level between the secant piled wall and the building.

6.7 Support

The analysis has been based on a temporary prop being installed at an elevation of +25m OD. Following excavation to formation, it is proposed to extend the basement floor slab to support the secant pile wall in the permanent condition. The basement floor slab is shown at an elevation of +18m OD. Additionally, the first and second floor slabs will support the secant pile walls in the permanent case.

6.8 Pile Wall Stiffness

The pile wall stiffness has been calculated using the same processes as outlined in Section 5.7.

The calculated stiffness values are shown in Table 6.1.

	Table 6.1: Western Boundary Secant Pile Wall Stiffness Values							
V	Wall Type	Pile Type	Design Short Term El (kNm²/m)	Design Long Term El (kNm²/m)				
		900mm Hard Piles @ 1,300mm c/c	520,255	371,611				
	Western Boundary Secant Pile Wall	900mm Firm Piles @ 1,300mm c/c	32,757	-				
		Combined Stiffness per m run	553,012	371,611				

6.9 Standards and Software

The same standards and software have been used in the design of the western retaining wall as outlined in Section 5.9.

6.10 Design Limit States

The Same Design Limit States have been used in the design of the western retaining wall as Section 5.10.

6.11 Groundwater

A groundwater level of +12m OD has been used in the analysis, as outlined in the Minerex assessment. It is proposed to install female piles to a minimum depth of 1m below formation. This will allow groundwater flow below this elevation. An additional case has been carried out in the long term to account for an increase in groundwater level to a level of +20m OD and a minimum equivalent fluid pressure (MEFP) over the full height of the wall.

6.12 ULS Analysis Results

Table 6.2: ULS Analysis Results							
Wall Type	Pile Bendir (kNm/r Wall Type		Pile Shear Force Min. M (kN/m Run) Level		Min. Male Pile Toe Level for		
	ULS C1 Bending	ULS C2 Bending	ULS C1 Shear	ULS C2 Shear	Stability (m OD)		
Western Boundary Secant Pile Wall	480	530	173	164	11.5		

The results of the ULS Analysis are summarised in Table 6.2

6.13 SLS Analysis Results

A SLS analysis has been completed using the Finite Element Analysis software Plaxis 2D. The results of the short term analysis (prior to temporary prop removal) are shown as Figure 6.2 and Figure 6.3, with the long term analysis shown in Figure 6.4 and Figure 6.5, which shows pile head movement of less than 20mm.

Figure 6.3: Western Elevation Short Term Vertical Movement

Figure 6.5: Western Elevation Long Term Vertical Movement

6.14 Main Reinforcement

ByrneLooby have carried out an assessment of the required main reinforcement in accordance with IS EN 1992-1-1:2004, based on the bending moments detailed above. This has calculated that a minimum area of steel of 1.0% for the secant piles. The above assessment may be refined during construction detailed design.

6.15 Monitoring Methodology

6.15.1 Vibration Monitoring

The vibration monitoring outlined in Section 5.15.1 is to be implemented for the western wall secant pile wall also.

6.15.2 Movement Monitoring

Like the southern elevation a monitoring programme and trigger levels is to be implemented. The proposed trigger levels for the various stages of the construction sequence are outlined in Table 6. and **Error! Reference source not found.**.

Table 6.4: Identification of Trigger Levels - Excavate to Formation (Prior to Temp. Prop Removal)

Trigger Movement		Action		
Green	<12mm	No Action Required. Proceed with proposed construction sequence.		
Amber	>16mm	Contact engineer immediately. Frequency of monitoring to be increased.		
Red	>20mm	Contact engineer immediately. Works to be suspended. Contingency Plan to be implemented and construction sequence may need amendment.		

Table 6.4: Identification of Trigger Levels - Excavate to Formation (Prior to Temp. Prop Removal)

Trigger Movement		Action		
Green	<12mm	No Action Required. Proceed with proposed construction sequence.		
Amber	>16mm	Contact engineer immediately. Frequency of monitoring to be increased.		
Red	>20mm	Contact engineer immediately. Works to be suspended. Contingency Plan to be implemented and construction sequence may need amendment.		

7 Northern Boundary Open Cut Excavation

7.1 Background

The Martello Tower is a military installation that was constructed over 200 years ago to withstand expected artillery fire. It is understood that the walls of Martello Tower are approximately 8ft thick (2.5m). Arising from concerns regarding the potential impact of the earthworks associated with the proposed development, an assessment of the ground movements on the Martello Tower has been completed.

The revised proposal for Block B is offset from the site boundary. Based on the offset, it is proposed to construct the basement using open cut excavation techniques. The proximity of the Block B basement to the northern site boundary is shown in Figure 7.1 and Figure 7.2, with the red line representing the site boundary and the blue line representing the development boundary.

Figure 7.1: Block B Basement Layout

Figure 7.2: Block B Basement Section

7.2 Basement Construction Works

Based on the offset from the proposed basement to the site boundary, it is proposed to construct the basement using open cut excavation techniques along this elevation. The open cut excavation batters will be subject to temporary works detailed design but are expected to be in the order of 1.5H:1V.

7.3 Ground Movements

Based on concerns regarding the basement's construction, ground movements associated with the excavation works and their impact on the adjacent Martello Tower, ByrneLooby have undertaken a building damage assessment. The assessment has been undertaken using ground movement curves caused by the lateral deflection of an embedded retaining wall, which are based on default values within CIRIA C760, which are derived from a number of historic cases. This is considered conservative, as the ground movements generated from open cut excavations will be significantly less and the assessment is considered worst-case. The ground movement curve used in the assessment is the 'Ground Surface Settlement due to excavation in front of a wall in Sand' as shown in Figure 7.3.

Ground level for the assessment has been taken for the higher ground level north of the site boundary (+25m OD), which based on Figure 7.2, has resulted in increased settlements. The predicted ground settlements are shown in Figure 7.4.

The results of the building damage assessment are shown in Section 8.

Figure 7.4: Predicted Ground Surface Settlement

8 Building Impact Assessment Methodology

8.1 Basis of Movement

8.1.1 Mechanisms Explored

ByrneLooby have carried out a number of preliminary ground movement assessments associated with the proposed construction techniques at the site. These have been carried out along the southern, western and northern elevations. This section outlines the methodologies used in the assessments with the results of the assessments outlined in the following sections.

The assessments have been based on the ground movements caused by the excavation adjacent to the proposed secant pile wall along the southern and western elevations and the open cut excavation along the northern elevation.

No additional allowance for ground movements caused by wall installation have been included, as per Ciria C760, which details that there are unlikely to be any significant ground movements arising from the installation of a cast in situ wall in stiff ground where the water table is low and workmanship is good.

8.1.2 Software Used

For the southern and western boundaries, the ground movement was assessed by using finite element (FE) software package Plaxis 2D, as outlined earlier in this report.

Following an assessment of the ground movements, the damage impact assessment was undertaken using the X-Disp software package from OASYS. This software is commonly used within the ground engineering industry and is considered to be appropriate tools for this analysis. The X-Disp program has the ability to assess surrounding infrastructure in line with the Burland Damage Impact Assessment (2001) and provide a damage category as necessary. The ground movement obtained by Plaxis 2D were imported into XDisp to allow the damage rating to be assessed.

The ground movements assessed along the northern elevation, caused by open cut techniques, have conservatively been based on empirical ground movements outlined in Ciria C760 caused by embedded retaining walls. This is considered conservative and a worst-case assessment.

8.2 Ground Movement Analysis

8.2.1 Southern Elevation

The predicted ground movements along the southern elevation, adjacent to the secant pile wall have been outlined in Section 5. For the basis of the ground movement analysis only the long-term analysis (worst-case analysis) has been considered. These ground movements have been presented as Figure 8.1 and Figure 8.2. Although, vertical settlements of 2.5mm are recorded at a distance from the wall, these are caused by the application of the 10kPa UDL rather than any impact of the basement excavation.

Figure 8.1: Southern Boundary Vertical Settlement

8.2.2 Western Elevation

The predicted ground movements along the western elevation, adjacent to the secant pile wall have been outlined in Section 6. For the basis of the ground movement analysis only the long-term analysis (worst-case analysis) has been considered. These ground movements have been presented as Figure 8.3 and Figure 8.4 and are the calculated movements at the adjacent Building's foundation level, which is assumed as 1m bgl (+24.5m OD).

Figure 8.3: Western Boundary Vertical Settlement

8.2.3 Northern Elevation

The predicted ground movements along the northern elevation were determined using empirical charts as detailed in Section 7.

8.3 Damage Impact Assessment

ByrneLooby have carried out a Damage Impact Assessment of the neighbouring structures based on the ground movements outlined above and the classifications given in Table 6.4 of CIRIA C760 (formally C580). These classifications, which have been extracted from and shown in the table below are based on the method of damage assessment outlined by Burland et al (1977), Boscardin and Cording (1989) and Burland (2001).

The assessment has been completed using the XDisp software.

Table 8.1: Table 6.4 of CIRIA C760: Classification of visible damage to walls (after Burland et al, 1977, Boscardinand Cording, 1989, and Burland, 2001

Category of damage	Description of typical damage (ease of repair is underlined)	Approximate crack width (mm)	Limiting tensile strain, $\varepsilon_{_{lim}}$ (%)
0 Negligible	Hairline cracks of less than about 0.1 mm are classed as negligible	<0.1	0.0 to 0.05
1 Very slight	Fine cracks that can easily be treated during normal decoration. Perhaps isolated slight fracture in building. Cracks in external brickwork visible on inspection	<1	0.05 to 0.075
2 Slight	Cracks easily filled. Redecoration probably required. Several slight fractures showing inside of building. Cracks are visible externally and some repointing may be required externally to ensure weathertightness. Doors and windows may stick slightly.	<5	0.075 to 0.15
3 Moderate	The cracks require some opening up and can be patched by a mason. Recurrent cracks can be masked by suitable lining. Repointing of external brickwork and possibly a small amount of brickwork to be replaced. Doors and windows sticking. Service pipes may fracture. Weathertightness often impaired.	5 to 15 or a number of cracks >3	0.15 to 0.3
4 Severe	Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Windows and frames distorted, floor sloping noticeably. Walls leaning or bulging noticeably, some loss of bearing in beams. Services pipes disrupted.	15 to 25, but also depends on number of cracks	>0.3
5 Very severe	This requires a major repair, involving partial or complete rebuilding. Beams lose bearings, walls lean badly and require shoring. Windows broken with distortion. Danger of instability.	Usually >25, but depends on numbers of cracks	

8.3.1 Southern Elevation

The nearest properties to the southern elevation secant pile wall are 21 and 22 Asgard Park houses, located approximately 40m south of the secant pile wall.

Based on the predicted ground movements, a **Category 0 (Negligible category)** has been determined for the garage of 22 Asgard Park, while 21 and 22 Asgard Park lie outside the zone of sensitivity, as shown in Figure 8.5.

Figure 8.5: Building Damage Assessment – Southern Elevation Secant Pile Wall

8.3.2 Western Elevation

The nearest property to the western elevation secant pile wall is the single level property to the rear of 25 Abbey Street. Based on the proposed alignment of the secant pile wall, the property is located approximately 2m from the secant pile wall.

Based on the predicted movements and proximity of the adjacent building, a **Category 2 (Slight category)** has been determined for the single storey property to the rear of 25 Abbey Street, as shown in Figure 8.6. Category 2 is considered an aesthetic damage category as outlined in Table 8.1.

Figure 8.6: Building Damage Assessment - Southern Elevation Secant Pile Wall

8.3.3 Northern Elevation

Martello Tower is located approximately 45m from the basement excavation.

Based on the predicted ground movements and offset to Martello Tower, Martello Tower falls **outside the zone of sensitivity** caused by the basement excavation works.

9 Eastern Elevation Stabilisation Works

9.1 Background

Evidence of local slippages such as scarp and displaced fenceposts are observed to the south-east of the site, adjacent to Martello Tower, as shown in Figure 9.1. This is outside the site boundary and a vibration monitoring regime will be established along this boundary to ensure the proposed works do not cause slippages. All ground works will involve low-vibration methods of construction.

Figure 9.1: Balscadden Road adjacent to Martello Tower (ref. Google Maps) South East of the Site

It is recommended that remedial works are carried out on the eastern elevation adjacent to the site, to prevent any potential future slips occurring. The eastern elevation is shown as Figure 9.2.

The recommended remedial works involve the use of soil nailing and a flexible mesh. Soil nailing is a technique which reinforces the slope by the insertion of tendons. The nails address the global slope stability, which are connected in turn to a facing system which provides surficial stability. A suitable mesh would be selected in the construction which would encourage the growth of vegetation following its construction. It is recommended that the remedial works be completed in advance of the main piling and excavation works in the site.

Figure 9.2: Balscadden Road adjacent to the site

Figure 9.3 Soil Nailing Example, prior to vegetation re-growth

9.2 Basis of Design

Table 5

Partial factors for soil nail design

ByrneLooby have completed an analysis to assess the suitability of soil nails as a remedial measure along the eastern elevation.

The assessment was completed using the GeoStudio 2021 slope stability software package SLOPE/W. SLOPE/W uses the limit equilibrium method of analysis by dissecting a potential sliding mass into vertical slices. It assesses the factor of safety for both moment and force equilibrium based on various methods, including Janbu (1954), Bishop (1955) and Morgenstern and Price (1965). The Morgenstern-Price method has been used in this instance as it satisfys all equilibrium conditions and can deal with any shape of failure surface.

I.S. EN 1997-1:2004 Eurocode 7 outlines that the practice for the design and execution of reinforced fill structures and soil nailing should utilise the limit equilibrium method and partial factors recommended in 'BS 8006-2:2011: Code of Practice for Strengthened/Reinforced Soils and Other Fills'. Best practice guidance set out in CIRIA C637 (2005) has also been used where suitable. Table 5 from BS 8006-2:2011 is reproduced below as a summary of the appropriate partial factors.

Design values ar the characteristi factors. ^{A)}	e to be obtained c values of the m	by multiplyir aterial prope	ng the rep rties and s	resentative values oil nail resistances,	of the actions, and dividing by the following partial
				Set 1	Set 2
Actions	Self-weight o	f soil, W	dst ^{B)}	$\gamma_{a} = 1.35$	$\gamma_{\alpha} = 1.0$
			stb ^{B)}	$\gamma_{q} = 1.0$	$\gamma_{q} = 1.0$
	Permanent su	$rcharge, q_p$	dst	$\gamma_{qp} = 1.35$	$\gamma_{qp} = 1.0$
		-	stb	$\gamma_{qp} = 1.0$	$\gamma_{qp} = 1.0$
	Variable surc	harge, q_v	dst	$\gamma_{qy} = 1.5$	$\gamma_{gy} = 1.3$
			stb	$\gamma_{qy} = 0$	$\gamma_{qy} = 0$
	Ground-wate	r pressure,	dst	$\gamma_{u} = 1.0$	$\gamma_u = 1.0$
	u		stb	$\gamma_{u} = 1.0$	$\gamma_{\mu} = 1.0$
Material	$\tan \varphi'_k$			$\gamma_{tape'} = 1.0$	$\gamma_{tape'} = 1.3$
properties	c' _k			$\gamma_{c'} = 1.0$	$\gamma_{c'} = 1.3$
	cuk			$\gamma_{cu} = 1.0$	$\gamma_{cu} = 1.4$
	7k			$\gamma_{\gamma} = 1.0$	$\gamma_{\gamma} = 1.0$
Soil nail	Bond	Empirical		$\gamma_{rb} = 1.1$	$\gamma_{rb} = 1.5$
resistances C)	stress ^{D)} , τ_{bk}	Effective s	Effective stress ^{E)}		$\gamma_{rb} = 1.5$
		Total stres	Total stress ^{E)}		$\gamma_{rb} = 1.5$
		Pull-out te	ests ^{F)}	$\gamma_{rb} = 1.1 - 1.7$	$\gamma_{rb} = 1.5 - 2.25$
	Tendon stren	gth, T _k		$\gamma_{s} = 1.0$	$\gamma_s = 1.15$ for steel
Model factor	Applied to th unfavourable	e effect of actions ^{F),G)} (e	e.g. to	7/Sd	γ _{sd}
	M _{driving} in the circles)	case of Bish	op's slip		

Table 9.1: Summary of Partial Factors as per BS 8006-2:2011

In order to obtain caharacterisitc bond stress parameters, the partial factors as outlined in Table 6 of BS 8006-2:2011 have been accounted for. Table 6 has been shown below for information.

Table 9.2: Summary of Partial Factors Recommended in BS 8006-2:2011

Method of determining ultimate bond stress, $\tau_{\rm bu}$	Factors for determining characteristic bond stress from ultimate values $\tau_{bk} = \tau_{bu} / \gamma_k$	Factors for determining design bond stress from characteristic values for set 1, $\tau_{bd} = \tau_{bk} / \gamma_{rb}$	Factors for determining design bond stress from characteristic values for set 2, $\tau_{bd} = \tau_{bk} / \gamma_{\tau b}$
Empirical pullout test data	γ_k = 1.35 to 2.0 Selected value to be based on degree of confidence relative to proposed structure, soils, construction method, etc.	$\gamma_{\rm rb} = 1.11$	$\gamma_{rb} = 1.50$
Effective stress NOTE $\tau_{\rm bu}$ derived from characteristic ϕ'	$\gamma_k = 1.0$ to 1.35 Selected value to account for potential for dilation and degree slope deformation in active zone	$\gamma_{\rm rb} = 1.11$	$\gamma_{\rm rb} = 1.50$
Total stress NOTE τ_{bu} derived from characteristic c_u .	$\gamma_{\rm k}$ = 1.35 to 2.0 selected value to account for potential for strain softening, plasticity and shrink swell effects	$\gamma_{\rm rb} = 1.11$	$\gamma_{\rm rb} = 1.50$
Pullout tests	See BS EN 14490:2010 Characteristic selected as a cautious estimate of the test data, taking into account the number of test results, location and consistency.	γ_{rb} = 1.1 to 1.3 for coarse grained soils γ_{rb} = 1.5 to 1.7 for medium and high plasticity soils	γ_{rb} = 1.5 to 1.7 for coarse grained soils γ_{rb} = 2.0 to 2.25 for medium and high plasticity soils

Table 6 — Ultimate limit state approach to deriving design values

9.3 Surcharge

A surcharge of 10kPa has been applied to the analysis, which is representative of plant up to 30 tonne loaded weight as per recommendations in Ciria C760.

9.4 Design Sections

Based on the topographical survey a single design section has been taken. The design section taken is summarised in the table below. Please note the assessment is subject to detailed construction design which may lead to a refinement change in the number and spacing of soil nails.

Design Section	Slope Height (m)	Slope Angle (deg)	Row of Nails (No.)	Angle of Nails (deg)	Horizontal Spacing (m)	Vertical Spacing (m)
1	10	40	6	15	1.5	1.5

9.5 Soil Nail Parameters

9.5.1 Tensile Strength of Nails

The maximum value of the design tensile strength has been calculated using Section 4.5.1 of BS 8006-2:2011:

$$R_{td} = \frac{R_{tk}}{\gamma_s} = \frac{A_{s,nom} f_{yk}}{\gamma_s}$$

Where:

- R_{td} is the design tensile strength
- γ_s is the partial factor on steel strength, taken as 1.15
- $A_{s,nom}$ is the nominal cross-sectional area of the reinforcement taking account of corrosion
- f_{yk} is the characteristic yield strengths of the tendon

ByrneLooby have carried out the analysis based on Dywidag R32-250 DYWI Drill Hollow Bar Type Soil Nail. Based on this, the design strength has been calculated as:

Design Strength, $R_{td} = (302 \times 510) / 1.15 = 164,086N = 134kN$

9.5.2 Borehole Diameter

ByrneLooby have carried out the analysis based on a drill bit of 115mm.

9.5.3 Bond Stress of Soil Nails

Recommendations outlined in CIRIA C637 in relation to ultimate bond stress between the grouted soil nail and the surrounding ground have been used to estimate the bond stress for design purposes. Table 8.4 of CIRIA C637 summarises typical soil nail test results and bond stress values observed for various British and Irish soils – extracts from this table have been shown below.

Based on the below and the ground conditions encountered on site an ultimate bond stress of 50kPa has been used in the analysis.

Soil type and description	Nall type	Nall diameter	Ultimate unit bond	Ultimate	Construction method	Soli type	Ultimate bond stress (kN/m²)
		(mm)	(kN/m)	(kN/m2)	Augered	Loess	25-75
						Soft clay	20-30
Sands, silty sands and clay	vey sands					Stiff to hard clay	40-60
Dense Wohum Sand	Routh driven her	25.4	4-15	81-100		Clayey silt	40-100
Formation sand	Hough unvertibal	2.004	4-10	01~190 I		Calcareous sandy clay	90-140
				1		Sity sand fill	15-20
Weakly cemented fine to medium sand	Bored and grouted	140	60, 116	130, 265	Open hole	Non-plastic silt	20-30
(Bracklesham Group)						Medium-dense sand and silty sand/sandy silt	50+75
						Dense sity sand and gravel	80-100
Dense silty clayey sand	Not available	120	n/a	110-130		Very dense sity sand and gravel	120-240
and the second se	Note of the second second					Stiff clay	40-60
weakly cemented sitty sand (Tunbridge Wells	brised and grouted	114	11	49		Stiff clayey sitt	40-100
Sand Formation)						Stiff sandy clay	50-100
Firm sandy clay and silty	Self-drilled with	100	18-30	58-98	Rotary-drilled	Marl/limestone	300-400
fine sand (Hythe	75 mm-diameter	1903.1	124022	1920.241		Soft dolomite	400-600
Formation)	clay bit					Weathered sandstone	200-300
	and there are a second s					Weathered shale	100-150
Boulder clays and glacial t	lits					Weathered schist	100-175
Direct Devider Clay (Final	Peilled and deviated	***	63.04	477.005		Basalt	500-600
Black boulder ciay (cire)	United and grouted	114	03-04	1//-235		Sitty sand	100-150
Glacial till (South	Drilled and grouted	Not	Not	65		Sitt	60-75
Yorkshire)		available	available		Driveo	Dense sand/gravel	180-210
Firm to stiff slightly sandy	Self-drilled with	75	16-37	68-155	casing	Sandy colluvium	70-190
clay with some gravel (glacial till - Midlands)	sacrificial bit					Clayey colluvium	40-75
Manage an - sumprished					Jet-grouted	Sand	380
Firm sandy clay (till)	Auger and grouted	187	20, 54	34, 92		Sand/gravet	700

Table 9.4: Typical Values of Ultimate Bond Stress (ref. CIRIA C637)

9.6 Analysis Results

The results of the SLOPE/W analysis of the soil nailed slope are shown in the table below, with the graphical outputs included in the figures below.

Section	Vertical	Horiz.	Total No.		FoS / ODF	
Section	(m)	(m)	of Rows	ows SLS	ULS Set 1	ULS Set 2
1	1.5	1.5	6	1.509	1.410	1.130

Table 9.5: Slope/W Soil Nail Slope Analysis Results

Figure 9.4: Slope/W SLS Analysis Results

Figure 9.5: Slope/W ULS Set 1 Analysis Results

Figure 9.6: Slope/W ULS Set 2 Analysis Results

10 Howth Sewer Tunnel Assessment

10.1 Howth Sewer Description

As part of the North Dublin Drainage Scheme, a tunnel was constructed through the site in the 1950s. The location of the tunnel is shown as Figure 10.1. The approximate site location has been imposed onto the drawing and is shown as Figure 10.2. The tunnel is understood to be 6ft in diameter and consists of a high and low level tunnel. The depth to the tunnel invert is believed to range from 20m to 35m below the site's ground level.

Figure 10.1: North Dublin Drainage Scheme - Howth Tunnel

Figure 10.2: North Dublin Drainage Scheme – Howth Tunnel

10.2 Raft Foundations

The foundations proposed for this development are raft foundations. The raft area of the deepest, Block B, is approximately 5,300m² in area and 69m in width (based on latest Architectural plans). The basement proposed formation level is approximately +17.5m OD (which is approximately 3m below existing ground level) and the raft foundation will have a bearing pressure of 80kN/m² as confirmed by Waterman Moylan.

10.3 Stress Induced by Applied Loads

ByrneLooby have carried out an assessment to assess the change in stress applied to the sewer tunnel using Plaxis 2D. The analysis has been carried out for Block B, where the excavation shall be least. In areas north of Block B, where excavation depths are greater there will be a net reduction on stress on the tunnel, despite the raft foundation loadings.

The assessment has modelled the initial stresses on the tunnel and modelled the construction sequence through bulk excavation works and construction of raft slab and building loading.

Based on the above information, the stress on the tunnel prior to any construction works has been calculated as 373kN/m². Following bulk excavation works, construction of the basement raft slab and the building, the stress on the tunnel has been calculated as 387kN/m², resulting in an increase in stress of 14kN/m² (4% increase in stress), with the results shown in Figure 10.3 and Figure 10.4. It is noted that the tunnel sewer has been presented as a line indicating the assumed level of the tunnel invert. Based on the limited stress increase on the tunnel, and that the initial tunnel stresses being greater north of this section (where the overburden over the tunnel is significantly greater) than the net stresses under Block B, the above increase in stress is considered acceptable.

Figure 10.4: Sewer Assessment- Long Term

11 Conclusion

ByrneLooby have been requested by Balscadden GP3 to provide geotechnical design services for the proposed development at Balscadden Road, Howth. The engineer for the scheme is Waterman Moylan Consulting Engineers.

This report has been produced to detail the various geotechnical aspects covered in ByrneLooby's assessment. These include:

- Design of a secant pile wall with buttress piles along the southern elevation and building damage assessment based on predicted ground movements. Arising from the Damage Impact Assessment of neighbouring structures based on ground movements along this elevation, a Category 0 (Negligible Category) has been determined for the garage of 22 Asgard Park, while 21 and 22 Asgard Park lie outside the zone of sensitivity;
- Design of secant pile wall along the western elevation and building damage assessment based on predicted ground movements. Arising from the Damage Impact Assessment of neighbouring structures based on ground movements along this elevation, a Category 2 (Slight Category) has been determined for the for the single storey property to the rear of 25 Abbey Street. As outlined, Category 2 is considered an aesthetic damage category;
- Assessment of ground movements along northern elevation for open cut basement excavation. Arising from the Damage Impact Assessment of neighbouring structures based on ground movements along this elevation, it has been determined that the Martello Tower falls out of the zone of sensitivity caused by the basement excavation works;
- Proposed remedial works along eastern elevation. These proposed remedial works have been outlined as a soil nailing solution; and
- Assessment of raft slab foundation pressures on Howth Sewer Tunnel. The assessment has calculated an increase in stress on the sewer of 4%. As areas to the south of the assessed area are currently applying greater stresses than the calculated increased value, this increase in stress is considered acceptable.

Full details of the assessments are found within this report.

Appendix A – Designers Risk Assessment

Prc Engir	Project Risk Assessment of Safety and Health Hazards / Risks Engineers Ireland							
Designer's Assessment of Safety and Health Hazards / Risks								
Proje	ect: Balscadden			Designer: Nick Peters	Date:	04/02/2022		
Ref N	lo: B1800-GEO-DRA01			Checker: Maurice Ryan	Date:	04/02/2022		
Desi	n Phase (Concept; Preliminary	; Detailed or Redesign): Piling platf	orm design			-		
Note:	review previous phase b/f items							
No	Key construction hazards (o	r risks) identified	Evaluations. Design decisions mac	de (or alternative actions)				
1	Unsuitable Wall Design for s	outhern and western elevations	Secant Pile retaining v designed based on re	walls designed in accordance with EC7 with re cent site specific ground investigations and gr	commendations fro oundwater monitor	om CIRIA C760. Walls have been ing.		
2	Formation Levels		Formation levels have been provided by the Engineer/Architect. Strict control over formation levels are to be implemented by the contractor. Formation levels are not to be exceeded.			rmation levels are to be		
3	Unforseen Ground Conditior	ns	Secant Pile retaining should be communica	Secant Pile retaining wall has been designed in accordance with relevant SI data. Any variations in ground conditions should be communicated to the detailed pile designer.				
4	Ground and adjacent buildin	g movement	ByrneLooby have outlined predicted movements based on the specimen design and the impact of these movements or adjacent structures/infrastructure.			e impact of these movements on		
5	Groundwater Levels		Minerex have completed a Hydrogeological Assessment Report which has outlined groundwater levels. The secant pile walls have been designed such that the female piles shall terminate at shallow depths than the male piles to allow flow of water beneath the slab level.					
6	Martello Tower		A ground movement assessment has been carried out adjacent to the northern elevation. The assessment is considered conservative and shows that the movements will not impact on the Martello Tower.					
7	Monitoring		Vibration monitoring is to be completed through the piling works to ensure no impact on the adjacent structures and infrastructure. Movement monitoring is to be carried out throughout the bulk excavation works based on the trigger limits outlined in the report.					
8	Howth Sewer		ByrneLooby have carried out an assessment on the impact on the development on the underlying Sewer which shows there will only be a minor increase in stress on the sewer. As areas to the south of the site currently apply greater stress to the sewer, the above increase in stress at the location of the development is considered appropriate.					
9	_							
10								
Notes	re providing info.	Item Nos. (from above)		Remarks				
a) F	or client's designer	All						
b) н	azards particular risks	-						
c) Other particular risks		-						
d) Re assumed construction methods		All						
e) F	or safety file	All						
f) Ir	f) In-house: b/f to future stages							

Other parties please take note: These are designer's risk evaluations of design options carried out in-house for the purpose of our complying with designer' duties under the Safety, Health and Welfare at Work (Construction) Regulations 2006 -2013, CDM2015 CDM2016 N.I. or other legislative EHS requirements. The evaluations relate only to those aspects / elements of the project which we are responsible for designing under the terms of our appointment by our client. Other Parties should not rely on these evaluations for their own purposes; in particular, contractors, who must deal with and control risk arising during construction, must carry out their own definitive risk assessment ab initio for that purpose

Appendix B – Minerex Hydrogeological Assessment Report

Hydrogeological Assessment Report for proposed development at Balscadden Road, Howth, Co. Dublin

Minerex Doc. Ref.: 3330-031 (Hydrogeological Assessment Report) (Rev 1)

Date: 21/02/2022

Report by:

Minerex Environmental Limited Hydrogeological, Environmental and Geophysical Services Taney Hall, Dundrum, Dublin 14, Ireland Dublin 14, Ireland Tel.: +353-(0)1-2964435 Fax.: +353-(0)1-2964436 Email: <u>enquiries@minerex.ie</u> Website: <u>www.minerex.ie</u>

Report To:

Shaun Thorpe Heritage House, 23 St. Stephen's Green Dublin 2 D02 AR55 Ireland

Prepared by:	Reviewed by:	
Chi Fernell	Cecil Shine	
Chris Fennell	Cecil Shine	
Ph.D	B.Sc., M.Sc., PGeo, EurGeol	
Hydrogeologist	Project Director	
	Dewatering & Contaminated land	

Contents

Executive Summary		1
1.Intr	oduction	2
2.Site	e Description	3
2.1	Geology	3
2.2	Quaternary Sediment / Overburden	6
2.3	Aquifer Classification	6
2.4	Groundwater Recharge	6
2.5	Groundwater Vulnerability	6
2.6	Protected Areas	7
2.7	Surface Water Features	7
2.8	Howth Tunnel	8
3.Sar	npling & Assessment	9
3.1	Site Investigations	9
3.2	Monitoring & Sampling	9
4.Res	sults & Assessments	14
4.1	Hydrochemistry	14
4.2	Water Level Monitoring	16
5.Pro	posed Development & Local Hydrogeology	19
5.1	Conceptual Hydrogeological Site Model	19
5.2	Proposed Development Structures	19
5.3	Proposed Development Influence on Hydrogeology	19
6.Sur	nmary & Conclusions	23
7.Ref	erences	24
8.Ap	pendices	25

WORK AND REPORT LIMITATIONS

IMPORTANT: This section should be read before reliance is placed on any of the opinions, advice, interpretations, conclusions or recommendations in the following report.

- Although every effort has been made to ensure the accuracy of the material contained in this document, complete accuracy cannot be guaranteed. Neither the Minerex Environmental Limited nor the author(s) accept any responsibility whatsoever for loss or damage occasioned or claimed to have been occasioned, in part or in full, as a consequence of any person acting, or refraining from acting, as a result of a matter contained in this publication.
- 2. Minerex Environmental Limited (MEL) has prepared this document for the sole use of its client in accordance with the work authorised.
- 3. No warranty, expressed or implied, is made as to the professional advice included in this report or any other services provided by MEL. However, MEL does carry Professional Indemnity (PI) Insurance.
- 4. All or part of this document may not be reproduced or be relied upon by any other party without prior and express written permission from MEL.
- 5. Interpretations contained in this report are derived from available information of the site conditions, the likely environmental responses and the experience of the company.
- 6. MEL has prepared this report in line with best current practice and with all reasonable professional judgement, skill, care and diligence in consideration of the limits imposed by materials, equipment and methodologies used, and the time constraints and resources devoted to it as agreed with the client.
- 7. The interpretative basis of the conclusions contained in this report should be taken into account in any future use of this report. If the scope of the works includes drilling, pitting, sampling, or interpretation of such information, the client's attention is drawn to the fact that special risks occur whenever hydrogeological and related disciplines are applied to identify subsurface conditions.
- 8. The environmental, geological, geotechnical, geochemical, hydrological and hydrogeological conditions etc. that MEL interprets to exist between sampling points may differ from those that actually exist. Trial pitting and drilling, for example, exposes the subsoils over typically <1% of a site and in sites with long histories with several owners and business practices, interpretations and interpolations can be very different to the actual site conditions. Even a comprehensive sampling and testing programme, implemented in accordance with a professional Standard of Care considering Industry Standard Guidance, may fail to detect certain physical conditions, geology, geochemistry and hydrochemistry etc only discovered later on during bulk excavations for example.</p>
- 9. Also, the passage of time, natural occurrences, and activities within and in the adjacent sites to the site, may substantially alter the discovered conditions at any time after the Site Investigations and interpretations are carried out by MEL.
- 10. Changes in the legislation, industry standards and guidance may cause opinion, advice, conclusions and recommendations set out in MEL reports to become out of date, inappropriate or incorrect. Once a report has been issued to a Client, MEL will have no obligation to advise the Client of any such changes, or their repercussions.
- 11. While MEL endeavours to take reasonable effort to assess data in hand at the time of writing and give the best advice possible, MEL will accept no responsibility for how the information within this report is interpreted and used. Where elements of this report are based upon information provided by others, it is assumed that all the relevant information has been supplied to MEL in full and is reliable, accurate and representative. It should always be assumed that MEL has not independently verified any information provided by others. MEL, its agents, directors, owners, employees, and contractors therefore will not be held responsible for any loss (reputation, financial, technical or otherwise) occurring from the use of this report, however caused.

Executive Summary

- 1. The site for the proposed development is underlain by a thick layer of glacial sands, gravels and clays. A wide mapped fault is located along the southern end of the site dividing Carboniferous limestones (North) from older Cambrian Bedrock (South) with fault Breccia visible on the southern end of Balscadden Bay.
- 2. Continuous water level monitoring, site surveys, water sampling and hydrochemical analysis have been used to develop a conceptual hydrogeological site model.
- 3. The conceptual site model indicates groundwater flow towards Grays Brook to the west of the site, northwards towards the Martello tower and eastwards towards Balscadden Bay as evidenced by the mapped and sampled springs.
- 4. The conceptual site model indicates that the proposed development, which includes 2no. secant piled walls (south and west), is unlikely to impede groundwater flow or create any significant barrier effect. The southern piled wall does not extend to the water table. While the male piles of the western piled wall do extend to the water table the likelihood of any impedance of groundwater flow is mitigated due to the groundwater flow direction and the raised levels of the female piles.

1. Introduction

Minerex Environmental Limited (MEL) was commissioned by Marlet to carry out a hydrogeological assessment for a proposed development at Balscadden Road, Howth. Co. Dublin.

The scope of this report and the specific deliverables of the assessment, as requested, are as follows:

"A Hydrological Assessment of the site is required including an assessment of the groundwater levels and natural ground water flows and/or water courses adjacent to and within the site. The Hydrological Assessment shall address the proposed development in relation to the existing hydrology both within and adjacent to the site and shall include:

- 1. Groundwater monitoring of the 2 no. borehole standpipe piezometers (via diver data logger or similar) over a 3-month period.
- 2. Logs for the monitoring of groundwater including a rainfall event.
- 3. Mapping of hydrological water courses both within and adjacent to the site.
- 4. Hydrological testing of existing water courses to determine source (saline testing).
- 5. Recommendations for the management of groundwater hydrology within the proposed development.
- 6. Impact of the proposed development on local groundwater hydrology.
- 7. Interpretive report."

2. Site Description

2.1 Geology

The site is predominantly underlain by the Ballysteen Formation. The lithology of the Ballysteen Formation is described as irregularly bedded with nodular bedded argillaceous bioclastic limestones (wackestones and packstones), interbedded with fossiliferous calcareous shales (Appendix A). A mapped fault is shown towards the southern edge of the site separating the Ballysteen formation from the Elsinore Formation. The Elsinore Formation is described as a polymict melange of quartzite, greywacke, siltstone, mudstone, and calcareous sandstone in a chaotic mudstone-sandstone matrix. Components in this formation can vary in size from pebbles to blocks hundreds of metres across.

A description of the local geology of Balscadden Bay including the fault located at the southern end of the site is included in Ref. 1 (see Figures 2.1 and 2.2). The southern side of Balscadden Bay is comprised of Cambrian aged 500-million-year-old bedrock that is more typical of the rest of the Howth peninsula. A wide fault zone spans the entire back of Balscadden Bay with fault Breccias evident on the southern end of the beach (Figures 2.3 and 2.4). Further north, The Martello Tower is underlain by glacial sediments which are in turn underlain by the aforementioned Carboniferous Limestone that is visible gently dipping along the beach (Figure 2.5).

Figure 2.1 Eastward view of Balscadden Bay showing bedrock lithology and fault (Ref.1)

Figure 2.2 Southward view of Balscadden Bay showing bedrock lithology and fault (Ref.1).

Figure 2.3 Fault Breccia visible at the southern end of Balscadden Bay.

Figure 2.4 Fault Breccia visible at the southern end of Balscadden Bay.

Figure 2.5 Carboniferous limestone on Balscadden Beach.

2.2 Quaternary Sediment / Overburden

The Quaternary sediment overburden of the site is described as gravels from Lower Palaeozoic sandstones and shales. As described in Ref.1, the steep slopes surrounding the site and the Martello Tower to the north are exposures of thick sands and gravels deposited by glacial meltwaters. There is a layer of till on top of these that indicate an ice sheet advanced over the sands as a last episode of glaciation. Much of the subsoil is mapped as having low permeability (Appendix A).

2.3 Aquifer Classification

The classification of the aquifer underlying the site reflects the bedrock lithology described in Section 2.1. The portion of the site to the north of the fault underlain by the Ballysteen formation is classed as locally important aquifer with bedrock that is moderately productive only in local zones. To the south of the mapped fault the aquifer is classed as poor which is generally unproductive except for local zones (Appendix A).

2.4 Groundwater Recharge

The volume of effective rainfall likely to reach groundwater, i.e. recharge, can be estimated from recharge coefficients compiled by the Working Group on Groundwater, which are based on soil drainage, subsoil permeability, vulnerability and aquifer type (Ref. 2).

Areas classified as "made ground" are assigned a recharge coefficient of 20% (see Appendix A) due to likely restrictions in recharge as a result of paving, building etc. (Ref. 2). This recharge coefficient provides an average recharge value of 53mm/yr for the site and surrounding areas. While this likely represents the developed areas surrounding the site, as much of this site itself is undeveloped, this likely underestimates the recharge.

While groundwater recharge is indicated by the combination of soils and subsoils, a natural recharge capacity limit is applied to poorly productive aquifers to simulate 'rejected recharge'. This reflects the limited ability of these aquifers to accept and transmit recharging waters.

The natural recharge capacity of locally important 'LI' bedrock aquifers is taken as 200 mm/yr, and 100 mm/yr for poor 'PI' and 'Pu' bedrock aquifers. Hence, the maximum recharge capacity for the proposed site is likely between 100 - 200 mm/yr.

2.5 Groundwater Vulnerability

Groundwater vulnerability at the site is mapped as ranging from High (H) at the east of the site to Extreme (E and X) towards the western edge of the site (Appendix A). High groundwater vulnerability represents

an area where the depth to rock or extent of subsoil overburden ranges between 3 - 10m. The Extreme (E) and (X) vulnerability categories represent areas where the subsoil thickness ranges from 0 - 3m and where rock is at or near the surface respectively.

While much of the western half of the site is mapped as E/X, the site investigation boreholes (BH01 and BH02) indicate at least 17m of overburden is present at these locations. While the eastern half of the site is regarded as having High vulnerability, the log from BH03 shows there to be at least 12.8 m of overburden.

The discrepancy between the vulnerability map and the site investigation is likely attributable to limitations in the vulnerability mapping data and its resolution. Given the findings of the site investigation the vulnerability of the site is likely to be moderate or low.

2.6 Protected Areas

The area to the east of the site, including Balscadden Bay and extending south around Howth Head and north along the East Pier, is designated under the Howth Head Special Area of Conservation (SAC) (Appendix A).

2.7 Surface Water Features

The EPA rivers database (Ref. 3) show two streams, one to the east and one to the west of the site (Appendix A). Gray's Brook flows northwards along Main Street onto Abbey Street where it flows along the west side of the site. It passes under Harbour Road and enters the sea to the east of the Yacht Club. Coolcur Brook, to the west of the site, flows northwards along Kilrock Road and enters the sea at the southern end of Balscadden Bay.

A more comprehensive and historical description of both rivers and their tributaries is presented in Ref. 4 (Figure 2.6). The Coolcur Brook has a catchment area of 47 hectares and is bounded by the Gray's Brook catchment on the west and the Kilrock and Canon Rock area on the east and north-east of the hill. Gray's Brook has a catchment area of 96 hectares and is bounded on the west by the Offington Stream catchment.

Figure 2.6 Rivers of Howth Head and Balscadden Bay (Ref. 4).

2.8 Howth Tunnel

The Howth Tunnel was constructed between 1955 and 1956 as the last section of a Main Trunk Sewer. It consists of a high and low level tunnel, which together are one-mile long (Ref. 5). The internal diameter of the sewer is 6.0 feet (1.83m) throughout the tunnel. The first 300m (1,000 feet) of the tunnel (from the Harbour Road Shaft), had to be supported with the primary lining RC segment rings. In that area material was not self – supporting or sound, and it predominantly consisted of boulder clay, limestone rock, dense clays of various colours, and loose brecciated quartzite rock. The tunnel passes under the site as shown in Figure 3.3.

3. Sampling & Assessment

3.1 Site Investigations

An initial site investigation was carried out in September 2017. Cable percussion boring was undertaken at 1 no. location (BH-GDG-01 – see Figure 3.1) using a Dando 150 rig to construct a 200mm diameter borehole. The borehole terminated at the scheduled depth of 20mbgl.

The groundwater standpipe installation incorporated a bentonite seal from 13.00mbgl to 14.50mbgl with a gravel response zone below this to 18.00mbgl and a second bentonite seal at the base of the response zone. The standpipe was installed to 18.00mbgl with a 3m slotted section back to 15.00mbgl to allow for any groundwater in this zone to ingress. A geosock was placed around the pipe at the slotted section. The borehole log is presented in Appendix B.

Following completion, a period of groundwater monitoring was undertaken. The well was found to be dry on four separate occasions throughout October 2017. This borehole was found to dry during all Minerex site visits in 2021.

In accordance with a Specification for Site Investigation Requirements Report issued by Waterman Moylan, two further S.I boreholes were scheduled for construction. In June 2021 cable percussion boring was undertaken at 3 no. locations (see Figure 3.1) using a Dando 150 rig to construct 200mm diameter boreholes. The boreholes terminated at depths ranging from 13.00mbgl (BH03) to 17.20mbgl (BH02) when obstructions were encountered. Groundwater monitoring standpipes were installed consisting of slotted pipe surrounded by a gravel response zone with bentonite seals (see Appendix C).

3.2 Monitoring & Sampling

3.2.1 Borehole Monitoring

Continuous groundwater level loggers or "divers" were installed in 2 no. boreholes (BH01 and BH02) for a nine-week period from August to October 2021. Groundwater levels were manually measured using a Solinst Dip meter during this period.

Boreholes BH01 and BH02 were sampled twice during the monitoring period (10/09/2021 and 06/10/2011). Prior to sampling the water level and total borehole depth of each monitoring point was recorded using a Solinst dip meter. Static water level was recorded with respect to a fixed point on the top of the well casing (noted on field sheet) with the height of this fixed above ground level also recorded. Sampling was conducted using a 12V submersible WASP five stage pump with dedicated tubing for each borehole. Prior to sampling each borehole was purged in accordance to BS ISO 5667:11. Samples were only taken once the stabilisation of field hydrochemical parameters was achieved. All field hydrochemical

parameters (pH, electrical conductivity and temperature) were recorded using a HANNA INSTRUMENTS[™] Probe calibrated using respective standard solutions.

3.2.2 Surface Water Monitoring

Three samples were taken from surface water streams in proximity to the site on the 10/09/2021. The locations and photos of each sampling points is presented in Figure 3.2. One sample (SW3) was taken upgradient of the site from Gray's Brook after is passes through a culvert under Dungriffin Road.

Note, there are discrepancies between the published Ref. 3 and Ref. 4 maps as to where Gray's Brook enters the sea. A sample (SW2) was taken from a visible surface discharge into the sea just east of the Yacht club. This is in proximity to where it is mapped by Ref. 3 and is likely Gray's Brook. A sample (SW01) was also taken from where Ref. 4 states it enters the sea at the base of East Pier.

No samples could be obtained from Coolcur Brook to the east of the site due to restricted access.

3.2.3 Spring Monitoring

A site survey and coastal assessment was carried out during low tide on the 10/09/2021. Groundwater springs were mapped and recorded. Several springs and seepages were observed along the western edge of the site, both on Balscadden Road and Balscadden Beach. Several seepages are evident on the retaining wall running along Balscadden Road at the base and to the west of the Martello Tower. These seepages are also apparent where they run onto the road itself.

Several spring discharges are apparent along the length of the beach. These are visible through a combination of pipe drains cast into the retaining wall at the top of the beach as well as through several weakness/pathways in the concrete. At low tide, spring discharge can be seen flowing over the beach and outcropping limestone on the northern part of the bay.

Three springs were sampled where sufficient water volume could be obtained. The locations and photos of each sampling point is presented in Figure 3.3. Sample SP1 was obtained from a concrete trough on Balscadden Road. The trough is fed from a drainage pipe cast into the retaining wall below the Martello Tower. Sample SP2 was obtained from a spring seepage apparent underneath the buildings at the northern end of Balscadden Bay. Sample SP3 was obtained from a spring flow through the concrete wall and pathway at the top of Balscadden Beach. This spring was located below the pedestrian steps to the beach. Several springs are also visible in the breccia exposed on the southern end of Balscadden Bay (Figure 2.4) however, flows were not sufficient to obtain a sample.

The western and northern bounds of the site (along Abbey Street) was also examined for the presence of springs. None were observed; however, the built-up nature of this area means observations are limited.

Figure 3.1 S.I Boreholes

Client: Marlet - Balscadden Project: 3330

Drawing Ref: 3330-008.ppt Drawn by: CF 12/10/2021

Common Legend

Site Outline

2021 S.I Boreholes

2017 S.I Borehole

Figure 3.3 Sampling Locations

Client: Marlet - Balscadden Project: 3330

Drawing Ref: 3330-008.Rev.1 Drawn by: CF 22/10/2021

Common Legend

Site Outline

Borehole (2021 S.I)

Borehole BH-GDG-01 (2017 S.I)

Spring (Sampled)

Spring (Not sampled)

Surface water sample

4. Results & Assessments

4.1 Hydrochemistry

Hydrochemistry results are presented in Table 4.1. Corresponding laboratory certificates of analysis are included in Appendix D.

The hydrochemical signatures associated with the surface water, groundwater and spring samples taken at the site are illustrated using a trilinear Piper diagram in Figure 4.1. The ultimate source of most dissolved ions in groundwater is the mineral assemblages in rocks near the land surface. Consequently, a general relationship between the mineral composition (or the hydrochemical signature) of natural water and that of the solid minerals with which the water has been in contact is to be expected. The term "hydrochemical facies" is used to describe the different types of groundwater hydrochemical signatures brought about by these interactions.

The hydrochemical signature associated with both BH1 and BH2 are similar and are consistent across the two separate sampling events. The hydrochemical results are consistent with a calcium/magnesium/bicarbonate signature. This is consistent with the carbonate nature of limestone bedrock.

The signatures from samples SW1 and SW2 are likely skewed towards a high sodium signature due to saline coastal influences. Both sampling points are submerged during high tide. While the samples were taken at low tide the saline signature was still evident. This is consistent with the electrical conductivity recorded at the time of sample (37,800 and 23,000 μ S/cm). Comparisons between the upgradient and downgradient sample from Grays Brook are therefore challenging.

Sample SW3, taken upgradient of the site, is notably similar to the signature recorded at BH1 and BH2 (calcium/magnesium/bicarbonate). The sample was, however, significantly less mineralised, with lower concentrations of the major ions as would be expected from a surface water system.

The hydrochemical signature associated with samples SP1 and SP2 is notability consistent with BH1, BH2 and SW3. While SP1 has a similar signature, it is less mineralized compared to BH1, BH2 and SP2, with the conductivity less than half. This is consistent with mixing occurring between the natural groundwater and a less mineralized surface water. As this spring sample was taken from underneath the buildings on Balscadden Road, the mixing could be a result of a mains water leak.

The signature from SP3 has higher concentrations of sodium and potassium compared to SP1 and SP2. However, remaining hydrochemical parameters are consistent with the S.I boreholes and SP2. Note, sample SP3 was taken directly from the concrete trough on Balscadden Road due to insufficient flow from the spring. Hence, the water would have been stagnant. The elevated sodium and potassium concentrations would be consistent with increased exposure to the coastal environment.

REPORT BY Minerex Environmental Limited Report Ref. 3330-031

	BH1	BH2	BH1	BH2	SP1	SP2	SP3	SW1	SW2	SW3	
Parameter Unit		13/09	9/2021	06/10/2021			13/09/2021				
Alkalinity, Total as CaCO3	mg/l	355	300	348	390	115	305	315	155	180	150
Ammoniacal Nitrogen as N	mg/l	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Ammoniacal Nitrogen as NH4	mg/l	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chloride	mg/l	74.1	77.9	80	81	33.5	110	115	16300	9290	40.1
Conductivity	uS/cm	887	856	897	847	446	980	977	37800	23000	483
рН	рН	7.39	7.27	7.3	7.16	8.13	7.57	7.69	7.81	7.71	8.04
Nitrate as NO3	mg/l	35.3	30.2	37.1	29.4	7.61	30.7	<0.35	4.27	9.27	6.88
Phosphate (Ortho as P)	mg/l	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.0281	0.079	0.0826	0.03
Sulphate	mg/l	113	66.3	113	66.5	43	58.6	51.7	2240	1210	50.5
Calcium (Dis.Filt)	mg/l	123	116	126	122	52	122	81.4	343	228	66.8
Iron (Dis.Filt)	mg/l	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	0.0433	<0.114	<0.019	0.109
Magnesium (Dis.Filt)	mg/l	20.5	18.9	20	19	5.86	20.5	19.5	1020	624	8.85
Manganese (diss.filt)	µg/l	43.7	6.9	5.78	<3	<3	<3	9.69	<18	<3	44.4
Phosphorus (diss.filt)	µg/l	<10	<10	<10	<10	<10	<10	23.9	78.6	91.9	54.5
Potassium (Dis.Filt)	mg/l	8.36	5.71	9.71	5.5	2.94	7.27	11.9	299	175	2.44
Sodium (Dis.Filt)	ma/l	42.3	44.3	42.5	42.4	22.1	56.4	93.7	8940	5050	26

Table 4.1 Hydrochemistry result for borehole, spring and surface water monitoring.

Figure 4.1 Hydrochemical signatures associated with the samples obtained (Ref. 6).

4.2 Water Level Monitoring

Continuous water level data and antecedent rainfall taken from Met Eireann (Dublin Airport) is presented in Figures 4.2 - 4.4. The water level was consistently deeper (approx. 3m) in BH01 compared to BH02. Borehole BH-GDG-01 was dry during initial monitoring in 2017. It was dry throughout the course of this investigation in 2021.

Figure 4.2 Continuous water level data from BH01 and BH02.

Figure 4.3 Continuous water level data from BH01 and antecedent rainfall.

Figure 4.4 Continuous water level data from BH02 and antecedent rainfall.

5. Proposed Development & Local Hydrogeology

5.1 Conceptual Hydrogeological Site Model

A conceptual hydrogeological site model including conceptual groundwater contours and flow directions is presented in Figure 5.1.

As shown, groundwater flow is likely bound to the west of the site by Gray's Brook, with baseflow contributions likely from the western boundary of the site towards the Brook. A steep groundwater gradient from BH3 to BH1 is consistent with a northwards flow direction. Groundwater flow to the east is also apparent as evidenced by the presence of springs along Balscadden Road and Balscadden Bay. This is consistent with the hydrochemical signatures presented in Section 4.1. Bedrock groundwater flow is likely bounded to the south by the mapped fault. Seepages apparent in the Breccia located on the southern end of Balscadden Bay is consistent with groundwater flow along this fault.

The influence of the Howth Tunnel on the hydrogeological regime of the site is uncertain and would depend on the integrity of the lined section of the tunnel.

The groundwater hydrograph for BH01 and BN02 suggests little correlation with rainfall, at least on a short to medium timescale. This is consistent with depth and nature of the overburden. Further monitoring would be required to identify temporal variability of hydrographs in the long term. However, significant variation in the water level would not be expected seasonally.

5.2 Proposed Development Structures

Plans and section for the proposed development were provided to Minerex by Waterman Moylan and Byrne Looby. Two secant piled walls are planned as part of the development. One is located on the southern boundary of the site with the second located along a short section of the western boundary.

It is proposed that the male and female piles on the southern piled wall will extend to 17mOD and 23.5mOD, respectively. It is proposed that the male and female piles on the western piled wall will extend 11.5mOD and 16mOD, respectively. An 850mm RC raft slab will be constructed with an SSL of 18 mOD under a portion of the proposed development.

5.3 Proposed Development Influence on Hydrogeology

A conceptual cross section of the site, including the S.I boreholes, water level data and proposed piled walls is presented in Figure 5.2. The male piles of the southern piled wall do not extend to the water table (male pile toe level 17mOD). The likelihood of any disruption of groundwater flow and the creation of any barrier effect is low. This is further mitigated by the raised female pile toe level as the subsequent

gaps (conservative estimate of 15% open area) between the male and female piles will facilitate any flow from the unsaturated zone.

The base of the male piles in the western piled wall do potentially extend to the water table. However, any disruption to groundwater flow is mitigated by the level of the female piles. Furthermore, as shown in Figure 5.1, the inferred groundwater flow direction at this location is not perpendicular to the wall and rather is closer to parallel, further reducing the likelihood of any barrier effect.

Given a formation level of approximately 17mOD for the basements of the proposed development the likelihood of any disruption to groundwater flow is low. The nature of the bedrock and overburden give rise to a low recharge coefficient for the site. The development and the construction of any paved surfaces will likely further reduce the natural recharge capacity of the site. This should be mitigated against using permeable paving and adequately designed soakaways to manage surface water where possible.

Figure 5.1 Conceptual Site Model

Client: Marlet - Balscadden Project: 3330

Drawing Ref: 3330-008.Rev.1 Drawn by: CF 22/10/2021

Common Legend

Site Outline

Borehole (2021 S.I)

Borehole BH-GDG-01 (2017 S.I)

Spring (Sampled)

Spring (Not sampled)

 Proposed secant pile wall (approximate)

Groundwater equipotentials

 Conceptual GW flow direction

6. Summary & Conclusions

- The site for the proposed development is underlain by a thick layer of glacial sands, gravels and clays. A wide mapped fault is located along the southern end of the site dividing Carboniferous limestones (North) from older Cambrian Bedrock (South) with fault Breccia visible on the southern end of Balscadden Bay.
- 2. Continuous water level monitoring, site surveys, water sampling and hydrochemical analysis have been used to develop a conceptual hydrogeological site model.
- 3. The conceptual site model indicates groundwater flow towards Grays Brook to the west of the site, northwards towards the Martello tower and eastwards towards Balscadden Bay as evidenced by the mapped and sampled springs.
- 4. The conceptual site model indicates that the proposed development, which includes 2no. secant piled walls (south and west), is unlikely to impede groundwater flow or create any significant barrier effect. The southern piled wall does not extend to the water table. While the male piles of the western piled wall do extend to the water table the likelihood of any impedance of groundwater flow is mitigated due to the groundwater flow direction and the raised levels of the female piles.

7. References

No.	Description
1	Parkes, M (2012) Islands, Coasts and Quarries. The Geological Heritage of Fingal. Fingal
	County Council
2.	Hunter Williams, N.H., Misstear, B.D., Daly, D and Lee, M (2013) Development of a
	national groundwater recharge map for the Republic of Ireland. Journal of Engineering
	Geology and Hydrogeology, 46 , 493-506.
3	EPA Geoportal Map Viewer (2021) Environmental Protection Agency
4	Sweeney, C.L., O'Connell, G and Curtis, M (2017) The Rivers of Dublin. Irish Academic
	Press: Kildare.
5	O'Connor Sutton Cronin (2019) Rennie Place Strategic Housing Development, Balscadden
	Road, Howth, Co. Dublin. Structural and Geotechnical Engineering Report for CREKAV
	TRADING GP LTD.
6	Winston, R.B., 2020, GW Chart version 1.30: U.S. Geological Survey Software Release.
7	Public Data Viewer Series (2021) Geological Survey of Ireland

8. Appendices

Appendix A

Appendix B

Contra 54	ct No: 17	Cable Percussion Borehole Log										Borehole No: BH-GDG-01				
Contrac	ot:	Balscadden					East	ing:		728800.001			Date Started: 29/09		29/09/2017	
Locatio	n:	Howth, Dublin 13					Nort	Northing: 739083.441			Date Completed: 04/10/2017					
Client:		Crekav Ltd Partnership					Elevation: 34,67				Logged By:	S. Letch				
Engine	er:	Gavin & Doherty Geosolutions			Rig ⁻	Rig Type: Dando			o 150		Drilled By:	T. Tin	dall			
Dept	ר (m)	Stratum Description		Lege	nd L	evel ((mOD) Samples a		and Insitu Tests		Water	Backfill				
Scale	Depth						8	Scale	Depth	Depth	Туре	e Result		SUIKE	••••	
0.5	0.20	Stiff brown sandy slightly gravelly silty CLAY.							34.5 — — — 34.0 —	34.47	0.50	В	TT01			
1.0											1.00	с	N=17 (4,3/4,4	4,4,5)		
1.5 —	1.40	Medium dense light brow SAND with lenses of silty	vn silty gra v verv san	ivelly f dv GR	ine to AVEL	coarse			33.0	33.27	1.50	В	TT02			
2.0		,	, ,	,			× × × × × × ×	X X	- - - 32.5 —		2.00	с	N=30 (4,4/7,9	9,7,7)		
2.5 _							× × × × × ×				2.50	В	ТТ03			
3.0							**** ****		- 		3.00	С	N=42 (5,10/10,11,1	0,11)		
3.5							× × × × × ×	x x	- - 31.0		3.50	В	TT04			
4.0							××××××	X			4.00	С	N=34 (2,3/4,6	i,8,16)		
4.5 _							×××× ××××	X X			4.50	В	ТТ05			
5.0							× × × × × ×	X X 2	29.5 —		5.00	с	N=25 (3,3/5,6	6,6,8)		
5.5 -							× × × × × ×	× × 2			5.50	В	TT06			
6.0							* * * * * * * * *	× ×	28.5 –		6.00	С	N=28 (4,5/7,6	6,6,9)		
6.5							× × × × × × ×	× ×	28.0		6.50	В	ТТ07			
7.0							××× ××××		27.5		7.00	С	N=27 (3,4/4,7	7,8,8)		
7.5 -								2	27.0		7.50	В	TT08			
8.0							× × × × × ×	× z	26.5 —		8.00	С	N=34 (3,5/6,8	8,11,9)		
8.5 -							~ × × ×	× z	26.0 -		8.50	В	ТТ09			
9.0							× × × × × ×	X X	25.5 —		9.00	С	N=23 (4,5/4,4	4,7,8)		
9.5 -							* * * * * * *	× 2	25.0		9.50	В	TT10			
10.0							×××	×			10.00	С	N=22 (5,4/4,6	6,6,6)		
			- Ot 1	1.47	4. D. 1		<u> </u>	4-11 /			2					
1		Chiselling: Wate	Pr Strikes:	VVa	Iter Det	Water	Ins From	tallati	on:	Erom	заскtill:		Remarks:	drilling	Legend: B: Bulk	
			Sealed:	29/09 02/10 02/10 03/10	Depth: 2.00 2.00 8.50 8.50	Depth: Dry Dry Dry Dry Dry	0.00 15.00	15.00 18.00	Slotte	d 13.00 14.50 18.00 19.00	13.00 14.50 B 18.00 19.00 B 20.00	Gravel a Gravel a Gravel Gravel entonite Gravel	pprox 165I/m.	sonn y -	D: Disturb U: Undistu ES: Enviro C: Cone S S: Split sp	ed urbed onmental SPT oon SPT

Contract No: 5417	Cable Percussion Borehole Log										
Contract:	Balscadden	Easti	ng:		728800.001			Date Started: 29/09		29/09/2017	
Location:	Howth, Dublin 13	North	ning:	739083.441			Date Completed: 04/10		4/10/2017		
Client:	Crekav Ltd Partnership			Elevation: 34.67			Logged By: S. Letc		tch		
Engineer:	Gavin & Doherty Geosolutions			Rig Type: Dando 150			Drilled By:	dall			
Depth (m)	Stratum Description		nd Le	evel ((mOD)	Sa	amples	and Insitu Tes	sts	Water Strike B	Backfill
	Medium dense light brown silty gravelly fine to coarse	×××	× ×		Depth	Depth	Туре	Result			
10.5 — — —	SAND with lenses of slity very sandy GRAVEL.	XXX XXXX XXXX	2	4.0		10.50	В	TT11			
11.0		X X X X X	× 2	3.5		11.00	С	N=22 (8,5/5,4	4,6,7)		
11.5		× × × ×	2 2 2	30-		11.50	В	TT12			
12.0		* * * * * * *	×	0.0		12.00	с	N=21 (4,5/4,6	6,5,6)		
12 5 -		× × × ×	2	2.5 _		12 50	B	TT13			
		* * * * *	2	2.0 _		12.00		1113			
13.0		× × * × *	2	1.5 -		13.00	C	N=26 (4,4/4,7	7,8,7)		
13.5 -		X X X X X X X X X	2	- - 1.0		13.50	В	TT14			
14.0		×`× ×××	×			14.00	с	N=24 (4,5/5,8	8,5,6)		
- - - 14.5 -		`×`× ×××	2	0.5 -		14.50	В	TT15			
		× × × × × ×	× 2	0.0		1 1.00					
15.0		××× ×××	1	9.5		15.00	С	N=29 (6,8/5,5	5,8,11)		
15.5 —		`X XX	1	9.0		15.50	В	TT16			
16.0		× × × × ×	X X 1	_ 		16.00	с	N=23 (5,5/4,6	6,7,6)		
16.5		× × × ×	X	0.0		16.50	В	TT17			
		× × × ×) 1 ×	8.0		17.00		N-22 (6 7/0 6	C 11)		
		× × × × ×	× 1	7.5		17.00		N=32 (6,7/9,6	9,0,11)		
17.5		× × × × × ×) 1	7.0		17.50	В	TT18			
18.0		×. ×.× ×.×	× ×	6.5		18.00	с	N=15 (3,3/4,3	3,4,4)		
18.5		××× ×××	×			18.50	В	TT19			
- - - 19.0		* * * * * *) 1 X	6.0		19.00	с	N=40			10 ° ° ° 1
19.20	Very stiff brown slightly sandy slightly gravelly silty		1	5.5 -	15.47	10 50		(5,8/7,11,12	2,10)		
19.5 — — —	CLAY with low cobble content.					19.50	В	TT20			
20.0 - 20.00	End of Borehole at 20.00m	<u>*0</u> *)	<u>5.</u> 1	4.5	14.67						•••••••
	Chiselling: Water Strikes: Water Details:	I Inst	allati	on:	E	Backfill:		Remarks:		Legend:	<u> </u>
	From: To: Time: Strike: Rose: Depth Sealed Date: Hole Depth; Depth; Form: Depth; Depth; Form: Depth; Depth; Form: Depth; F	From:	To:	Pipe	: From:	To:	Type: V	/ater added to assist pprox 165I/m.	drilling -	B: Bulk D: Disturb	ed urbed
	02/10 2.00 Dry 02/10 8.50 Dry 03/10 8.50 Dry	15.00	18.00	Slotte	d 13.00 14.50 18.00 19.00	14.50 18.00 19.00 20.00	Bentonite Gravel Bentonite Gravel			ES: Enviro C: Cone S S: Split sp	onmental SPT boon SPT

Appendix C

Contra 58	ict No: 36	Cable Percussion Borehole Log											No:
Contrac	ot:	Balscadden			Easting	g:	728766.929			Date Started: 16/0		6/06/2021	
Locatio	n:	Howth, Co. Dublin			Northin	Northing: 739199.986				Date Completed: 18/06		/06/2021	
Client:		Marlet	Elevati	Elevation: 19.98				Drilled By:	J. O'T	J. O'Toole			
Engine	er:	Waterman Moylan	Boreho Diamet	ole ter:	200mm	ו		Status:	FINA	_			
Depth	h (m)	Stratum Description	Stratum Description			Level	(mOD)	Sam	ples	and Insitu Tes	ts	Water	Backfill
Scale	Depth	MADE GROUND: tarmacadam.			Scale Depth			Depth	Туре	e Result		Suike	
0.5	0.50	MADE GROUND: grey silty sandy gra	avel.	ow		- - 19.5 —	19.48						
		cobble content.		000	° × ° ° × ° °			1 00		10704		•	
1.0					•aו •a× 0 •aו •a× 0 •aו •× 0		-	1.00	C	N=17 (2,4/4,	5,4,4)	•	
1.5 _					۰ × ۰ × ۰ ۰ ۰ ۲ ۰ ۲ ۰ ۲ ۰ ۲ ۰ ۲ ۰ ۲ ۰ ۲	18.5 — 							
2.0					a X, a X, 0	- - 18.0 —		2.00	В	JOT02		4 - -	
					م × ، ، م × ، ه م × ، ، م × ، ه		-	2.00	С	N=12 (1,2/2,	3,3,4)		
2.5	2 80				0 × ۲۰ م م × ۲۰ م	17.5 -	17 18						
3.0 -	2.00	Loose becoming medium dense light gravelly SAND.	brown silty			17.0 —	17.10	3.00	B	JOT03	0 2 21		
3.5 —						- - 16.5 —	-	5.00	C	IN-7 (1,1/1,2	-, ~, ~)		
-						-	-						
4.0						16.0 — 	-	4.00 4.00	B C	JOT04 N=15 (1,2/3,	3,4,5)		
4.5						- - 15.5 -							
							-	F 00		10705			
5.0								5.00 5.00	С В	N=20 (2,2/3,	4,6,7)		
5.5 -	5.50	Light brown slightly silty gravelly SAN	ID.			14.5	14.48						
6.0 -	6.00	Mar d'anna da anna ha anna fa an d'anna d'anna d'anna d		41		14.0 —	13.98	6.00	В	JOT06			
		silty gravelly SAND.	brown sligr	ntiy		-		6.00	С	N=21 (2,2/4,	5,6,6)		
6.5 —						13.5							
7.0						13.0	-	7.00	В	JOT07	7 7 0)		
75						- - 12 5 -	-	7.00	C	N=28 (2,4/5,	7,7,9)	•	
-						-						•	
8.0						12.0 —	-	8.00 8.00	B C	JOT08 N=30			
8.5 —						- 11.5 —				(1,3/6,7,7,	10)		
									5	10700			
9.0								9.00 9.00	C R	JOT09 N=36	11)		
9.5 —						10.5 -				(2,4/7,9,9,	11)	4	
								10.00	B	JOT10		4	
		Chiselling: Water Strikes:	Water Detai	ls:	Instal	lation:	E	Backfill:		Remarks:		Legend:	
d		From: To: Time: Strike: Rose: Depth Sealed D	Ate: Hole Depth:	Water Depth:	From: T	o: Pipe	: From: 1	To: Type	: E	Borehole terminated	d due	B: Bulk D: Disturbe	ed
C.		16.40 16.50 00:45 17 16.80 17.00 01:00 18	7/06 12.30 8/06 17.00	Dry Dry Dry	14.00 17	.00 Slotte	ed 0.70 12 12.00 13 13.00 17	2.00 Grave 3.00 Benton 7.00 Grave	ite ite	- 5864 404011		ES: Enviro W: Water C: Cone S	nmental PT
Contrac 583	ct No: 36	Cable Percussion Borehole Log											
------------------	--------------	--	-----------------	--------------------------	--------------------------------------	--	---	--	---------------------------	-------------	---	--	
Contrac	t:	Balscadden		Eastin	g:	728766	6.929		Date Started:	16/06	/2021		
Locatior	ו:	Howth, Co. Dublin		Northi	ng:	739199	9.986		Date Completed:	18/06	/2021		
Client:		Marlet		Elevat	ion:	19.98			Drilled By:	J. O'T	oole		
Enginee	er:	Waterman Moylan		Boreh Diame	ole ter:	200mm	ı		Status:	FINA	L		
Depth	(m)	Stratum Description		Legen	Level	(mOD)	Sar	nples	and Insitu Tes	ts	Water	Backfill	
Scale	Depth	Medium dense becoming dense light brown slig	ghtly		Scale	Depth	Depth 10.00	Туре С	Result N=18 (2,3/4,	4,5,5)	Suike		
10.5	10.50	silty gravelly SAND. Verv stiff brown slightly sandy gravelly silty CLA	Y with		9.5 -	9.48							
11.0		low cobble content and bands of gravelly sand.			9.0 -	-	11 00	в	JOT11				
				x _0,		-	11.00	C	N=24 (3,4/5,	6,6,7)			
11.5 — — —					8.5 -								
12.0					8.0 -	-	12.00	B	JOT12 N=35				
- - 12.5 —				x x x		-	12.00	Ũ	(4,5/7,9,9,	10)			
						-	10.00		10742				
13.0						-	13.00	Б С	50 (25 fc 125mm/50	or) for			
13.5 -					6.5 -	-			90mm)				
14.0					6.0	-	14.00	В	JOT14	O for			
- - 14.5 -					5.5 –	-	14.00	C	235mm)			
				<u>x ~ 0</u>		-							
15.0					- 5.0 	-	15.00 15.00	B C	JOT15 50 (10,15/5	0 for			
15.5 -					4.5 -	-			125000)			
16.0					4.0 -	-	16.00	В	JOT16				
16.5						-	16.00	С	50 (11,14/5 100mm	0 for)			
	16.80	Obstruction - possible boulders				3.18							
17.0	17.00	End of Borehole at 17.00m		\square	- 3.0	2.98	17.00	С	50 (25 fc 5mm/50 for 5	or 5mm)		<u></u>	
17.5 —					2.5 -	-							
18.0					2.0	-							
						-							
18.5						-							
19.0					1.0 -	-							
19.5					0.5 -	-							
				-									
		Chiselling: Water Strikes: Water Details: Ins				E	Backfill:		Remarks:		Legend:		
		From: To: Time: Strike: Rose: Depth Sealed Date: Hole Depth: 15.00 15.20 00:45	Water Depth:	From: 0.00 14 14.00 1	ro: Pipe 1.00 Soli 7.00 Slotte	e: From: d 0.00 0 ed 0.70 12 12.00 13 13.00 17	To: Typ 1.70 Bento 2.00 Gra 3.00 Bento 7.00 Gra	oe: B onite to vel onite vel	orehole terminated	d due	B: Bulk D: Disturb U: Undistu ES: Enviro W: Water C: Cone S S: Split sp	ed urbed onmental PT oon SPT	

Contract 5836	i No: 6	Cable Percussion Borehole Log												B	orehole BH0	No: 2				
Contract:		Balscadd	en							East	ting:		72879	1.582		C	ate Started:	21/06	6/2021	
Location:		Howth, Co	o. Dubli	n						Nort	hing	:	73916	3.531		D C)ate Completed:	23/06	6/2021	
Client:		Marlet								Elev	atio	n:	19.58			C	rilled By:	J. O'	Foole	
Engineer	:	Watermar	n Moyla	n						Bore Diar	ehole nete	e r:	200mr	n		s	status:	FINA	L	
Depth ((m)			Stratu	ım Des	scripti	on			Lege	end	_evel ((mOD)		Sample	es a	and Insitu Te	sts	Water	Backfill
	Depth	MADE GF	ROUND	: tarm	acada	ım.					×	Scale 19.5 –	Depth	Dep	th Typ	be	Resul	t	Ounce	
0.5	0.20	Grey sligh	itly silty	very	sandy	GRA\	/EL.			^```X` X```X```	×	19.0	19.50							
										×××	×	-		1.0	n B		IOT1	7		
-										× × ×	×	18.5 —		1.0			N=12 (1,2/2	,3,3,4)		
1.5 —										×××	***	18.0								
2.0										×××	×	17.5		2.0	р в		JOT18	3 4 4 4)		
2.5										×××	×	- - 17 0		2.0			10 (2,0/0	, , , , , , , ,		
	2 00									× * * *	×. •	-	16 59	2.0				h		
	5.00	Loose beo gravelly S	coming AND.	mediu	ım der	nse br	own s	ilty ve	ry	×××	×	16.5 —	10.56	3.0			N=10 (1,1/2	,2,3,3)		
3.5										× × ×	•X.	16.0								
4.0										×××	*X.	- 15.5 —		4.0	рВ)		
4.5										× × × ×	•× •×			4.0		,	IN-0 (2,2/2,	<i>∠,∠,∠)</i>		
										× •× •×	*×	15.0								
5.0										× × ×	***	14.5 —		5.0 5.0	2 C		JOT2 N=11 (2,2/3	1 ,3,2,3)		
5.5 -										× × ×	×	14.0								
6.0										× •×	*X.	- - 13.5 —		6.0	р в		JOT2	2		
6.5										××××	*	-		6.0		,	N=8 (2,1/2,	2,2,2)		
										× × ×	•× •×	13.0								
7.0										× × ×	*×.	12.5 –		7.0 7.0	0 B 0 C		JOT23 N=11 (3,3/2	3 ,3,3,3)		••••
7.5 —										××××	*X.	12.0								
8.0										× × × × ×	×			8.0	р в		JOT24	4		
 	8 50									× × ×	*X,	-	11 08	8.0		;	N=15 (3,3/4	,4,3,4)		
	5.50	Medium dense becoming dense light brown silty gravelly SAND.	ty			11.0	11.00													
9.0						10.5		9.0 9.0) B) C		JOT23 N=13 (2,2/3	5 ,3,3,4)								
9.5	070					10.0	0.00													
	9.70	Very stiff b	prown s	lightly	sandy	y grav	elly si	Ity CLA	AY with		×	-	9.88	10.0	ю в		JOT2	3		
		Chiselling: Water Strikes: Water Details:		ails:	Ins	talla	tion:		Backf	 :		Remarks	:	Legend:						
S)	From: To: 17.10 17.2	Time: 0 01:00	Strike:	Rose:	Depth Sealed	Date: 21/06 22/06 23/06	Hole Depth: 3.00 12.00 17.20	Water Depth: Dry Dry Dry Dry	From: 0.00 9.00	To: 9.00 17.2	Pipe Solic Slotte	: From: d 0.00 ed 1.00 7.00 8.00 1	To: 1.00 E 7.00 8.00 E 17.20	Type: entonite Gravel entonite Gravel	Bor to c	ehole terminate	ed due	B: Bulk D: Disturb U: Undistr ES: Envin W: Water C: Cone S S: Split sr	ed urbed onmental SPT poon SPT

Contra 58	ict No: 36	Cable Percussion Borehole Log												B	orehole BH02	No: 2				
Contrac	ot:	Balscaddei	n							Eas	ting	:	72879	91.58	2		Date Started:	21/06	/2021	
Locatio	n:	Howth, Co.	Dubli	n						Nor	thin	g:	73916	3.53	1		Date Completed:	23/06	/2021	
Client:		Marlet								Elev	/atio	on:	19.58				Drilled By:	J. O'1	oole	
Engine	er:	Waterman	Moyla	n						Bor	eho net	le er:	200m	m			Status:	FINA	L	
Dept	h (m)			Stratu	m De	scripti	on			Lege	end.	Level	(mOD))	Sar	nples	and Insitu Tes	sts	Water	Backfill
Scale	Depth					-					× 0*	Scale	Depth	De	pth	Туре	Result		Surke	
10.5	10.50	Very stiff br	conter	nt. lightly	ntly sandy slightly gravelly silty				x x x x x x x x x x		9.5	9.08	10	.00	С	N=38 (6,7/7,9,11	,11)			
11.0											8.5 — - -		11. 11.	00	B C	JOT27 N=40 (7,8/9,9,10	,),12)			
11.5										×	\ ×i	8.0		12	.00	В	JOT28			
12.5												7.0		12	.00	С	N=37 (5,7/9,9,9,	,10)		
13.0										×		6.5 –	-	13 13	.00	B C	JOT29 N=44	1 12)		
13.5												6.0	-	1.1	00	D		1,12)		
14.0	14.60									× 		5.5 — - - 5.0 —	4.98	14	.00	C	N=39 (3,5/7,11,10	0,11)		
15.0 —		Very stiff br low cobble	own s contei	lightly nt and	sandy band	y grav s of gr	elly sil avelly	ity CL/ / sand	Ay with	x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0		4.5 –		15 15	.00	B C	JOT31 50 (5,11/50) for		
15.5										0 0 0 0 0 0		4.0					60mm))		
16.0										2012012012012012012012012012001200000000	0 0 0 X 1 0 X 1 0 X 1 0 X 1 0 X 1 0 X 1 0	3.5 – - -		16 16	.00	B C	JOT32 50 (6,12/50 115mm) 0 for)		
17.0	17.10											3.0 — - - 2.5 —	2.48	17	.00	С	50 (23 fc	or		
17.5 —	17.20	Obstruction	<u>ı - pos</u> I	SIDIE I End of E	DOUIDE	e rs. at 17.2	0m					2.0	2.38	17	.10	В	95mm/50 5mm) JOT33	tor		
												- - 1.5 — -	-							
18.5 _												1.0								
19.0										0.5 –										
19.5 —									0.0											
						+				-	\rightarrow									
		Chisellir	ng:	Wa	ter Stri	kes:	Wa	ter De	tails:	In	stall	ation:		Back	fill:		Remarks:		Legend:	
		From: To: 17.10 17.20	Time: 01:00	Strike:	Rose:	Depth Sealed	Date:	Hole Depth:	Water Depth:	From: 0.00 9.00	Тс 9.0 17.	o: Pipe 00 Soli 20 Slotte	e: From: d 0.00 ed 1.00 7.00 8.00	To: 1.00 7.00 8.00 17.20	Typ Bento Grav Bento Grav	vel vel vel vel vel	orehole terminate o obstruction.	d due	D: Disturb U: Undistu ES: Enviro W: Water C: Cone S S: Split sp	ed urbed onmental SPT boon SPT

Contract	t No: 6	Cable Percussion Borehole Log												B	orehole BH0	No: 3					
Contract:	:	Balscac	lden								Eas	ting:		72873	39.24	3		Date Started:	24/06	6/2021	
Location:	:	Howth,	Co. Dı	ublin							Nor	thing	:	73906	69.59	2		Date Completed:	28/06	6/2021	
Client:		Marlet									Elev	vatio	n:	19.42				Drilled By:	J. O''	Foole	
Engineer	:	Waterm	an Mo	ylan							Bore Diar	ehole nete	e r:	200m	m			Status:	FINA	L	
Depth ((m)			S	Stratu	m De	scripti	on			Lege	end_	Level	(mOD))	Sam	ples	and Insitu Tes	sts	Water	Backfill
Scale D	0.10	MADE (GROU	ND:	tarm	acada	ım.							Deptr 19.32	n De	pth	Туре	Result		ounto	
0.5	0.60	MADE (cobble (fragmer Medium	GROU conten nts. i dense	ND: t and e ligh	grey d son	sandy ne red	/ grav l brick lty gra	el with and c	n medi concre	ium te			19.0	18.82	2						
1.0													18.5		1. 1.	00 00	B C	JOT34 N=18 (2,3/4,	4,5,5)		
1.5 — — —																					
2.0													17.5 —	-	2. 2.	00 00	B C	JOT35 N=21 (2,4/5,	; ,5,5,6)		
2.5 -	2 80													16 62							
3.0		Medium	dense	e yel	low s	lightly	/ silty :	SAND).			×××	16.5 —		3. 3.	00	B C	JOT36 N=23 (4,5/5,	6,6,6)		
3.5 -											× ? × ×	XXX	16.0								
4.0											× × × × × ×	× × ×	15.5 — — —	- - - -	4. 4.	00	B C	JOT37 N=19 (2,4/4	, ,5,5,5)		
4.5											× × × × × ×	×××	15.0 — 	•							
5.0 - 4	4.90	Medium	dense	e ligh	nt bro	wn sil	lty gra	velly	SAND	-			14.5 —	14.52	5. 5.	00	B C	JOT38 N=15 (2,2/3,	3 4,4,4)		
5.5 -													14.0 —								
6.0													13.5 —	-	6. 6.	00	B C	JOT39 N=24 (2,4/5) ,6,6,7)		
6.5 - 6	6.40	Stiff bro cobble o	wn slig conten	ghtly t.	sanc	ly gra	velly s	ilty Cl	LAY w	ith low			13.0	13.02	2						
7.0											20 20 20 20 20 20 20 20 20 20 20 20 20 2		12.5 —		7. 7.	00 00	B C	JOT40 N=30 (2,5/7,) ,7,7,9)		
7.5 - 7	7.50	Very stil low cob	f black	slig	htly s	sandy	grave	elly silt	y CLA	Y with	0 × 0	e Xie X	12.0	11.92							
8.0											2012 2012 2012 2012 2012		11.5	-	8. 8.	00 00	B C	JOT41 50 (25 fe	or		
8.5 -											2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		11.0					135mm/50 10mm))		
9.0							20-20-20-20-20-20-20-20-20-20-20-20-20-2		10.5	- - - -	9. 9.	00 00	B C	JOT42 50 (5,7/50 100mm) for 1)						
9.5											20 20 20 20 20 20 20 20 20 20 20 20 20 2	o Xe X	95 -				_				
					147		1		F	1.2					10	.00	В	JOT43	}		• • •
)	Chis From: 7 12.80 13	elling: To: Tir 3.00 01	me: \$	Wa Strike: 4.80	ter Stri Rose: 4.50	Kes: Depth Sealed 6.80	Wa Date: 24/06 25/06 28/06	Hole Depth: 3.50 10.50 13.00	tails: Water Depth: Dry 10.20 3.80	Ins From: 0.00 4.00	stalla To: 4.00 13.0	tion: Pipe Solid Slotte	e: From: d 0.00 ed 3.00	Back To: 3.00 13.00	ttill: Type Benton Grave	ite to	Remarks: Borehole terminate D obstruction.	d due	Legend: B: Bulk D: Disturk U: Undistr ES: Envin W: Water C: Cone S S: Split er	oed urbed onmental SPT

Contra 583	ict No: 36	Cable Percussio	n Bo	oreł	nole	Lo	g		Bo	orehole BH03	No: 3
Contrac	ot:	Balscadden	Easting	g:	728739	9.243		Date Started:	24/06	/2021	
Locatio	n:	Howth, Co. Dublin	Northin	ıg:	739069	9.592		Date Completed:	28/06	/2021	
Client:		Marlet	Elevati	on:	19.42			Drilled By:	J. O'T	oole	
Enginee	er:	Waterman Moylan	Boreho Diamet	le er:	200mm	1		Status:	FINA	L	
Depth	า (m)	Stratum Description	Legend	Level	(mOD)	Sar	nples	and Insitu Tes	sts	Water	Backfill
Scale	Depth	Very stiff black slightly sandy gravelly silty CLAV with	×~~~~~	Scale	Depth	Depth	Туре	e Result	or	Strike	
10.5		low cobble content.		9.0		10.00	0	125mm/50 110mm) for)		
11.0				8.5 - - - 8.0 -	- - - - -	11.00 11.00	B C	JOT44 50 (25 fc 125mm/50	or) for		
			xX xX xX	-	-			100mm)		
12.0			<u>x - 0, - x</u>	7.5	-	12.00 12.00	B C	JOT45 50 (25 fc	or		
12.5 -				7.0 —				115mm/50 25mm)) for		
13.0	12.80 13.00	Obstruction - possible boulders. End of Borehole at 13.00m		6.5 -	6.62 6.42	12.80 13.00	B C	JOT46 50 (25 fo 5mm/50 for	or 5mm)		
13.5 –				6.0	-						
14.0				5.5 –	-						
14.5				5.0 —							
15.0				4.5 -	-						
10.0				4.0 —	-						
15.5				35 -	- - -						
16.0					-						
16.5				3.0							
17.0				2.5	-						
17.5				2.0							
18.0				1.5 —	-						
18.5 -				1.0 —	- - - -						
- - - 19.0 —				0.5 –	-						
19.5				0.0							
				-0.5 -	-						
A		Chiselling: Water Strikes: Water Details:	Install	ation:	· From ⁻	Backfill:	. P	Remarks:	d due	Legend: B: Bulk	- d
		12.80 13.00 01:00 4.80 4.50 6.80 Depth: Depth: Pepth:	0.00 4.0	00 Soli .00 Slotte	d 0.00 3 ed 3.00 1	.00 Bento 3.00 Grav	vel	o obstruction.		U: Undistu ES: Enviro W: Water C: Cone S	eu irbed onmental PT

REPORT TO Marlet Hydrogeological Assessment Report - Balscadden

Appendix D

Minerex Environmental Taney hall Eglinton Terrace Dundrum Dublin Dublin 14

Attention: Chris Fennell

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528700 Fax: (01244) 528701 email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

CERTIFICATE OF ANALYSIS

Date of report Generation: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: Order Number: 23 September 2021 Minerex Environmental 210914-80 3330-COC1 Marlet - Balscadden 614351

This report has been revised and directly supersedes 613762 in its entirety.

We received 8 samples on Tuesday September 14, 2021 and 8 of these samples were scheduled for analysis which was completed on Thursday September 23, 2021. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden.

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

Sonia McWhan Operations Manager

ALS Life Sciences Limited. Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No. 4057291. Version: 3.1 Version Issued: 23/09/2021

SDG: 210914-80 Client Ref.: 3330-COC1 Report Number: 614351 Location: Marlet - Balscadden Superseded Report:

613762

Validated

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
24972424	BH1		0.00 - 0.00	13/09/2021
24972431	BH2		0.00 - 0.00	13/09/2021
24972467	SP1		0.00 - 0.00	13/09/2021
24972476	SP2		0.00 - 0.00	13/09/2021
24972482	SP3		0.00 - 0.00	13/09/2021
24972439	SW1		0.00 - 0.00	13/09/2021
24972453	SW2		0.00 - 0.00	13/09/2021
24972460	SW3		0.00 - 0.00	13/09/2021

Only received samples which have had analysis scheduled will be shown on the following pages.

ALS)

210914-80

000

CERTIFICATE OF ANALYSIS

ALS _	SDG: Client Ref.:	210914-80 3330-COC1			Rep	ort Ni Lo	umbe catior	r: 61 n: M	4351 arlet -	Balso	cadde	n		Super	rsedeo	d Repo	ort:	6137	762			
Results Legend X Test N No Determining	nation	Lab Sample I	No(s)			24972424			24972431			24972467			24972476			24972482			24972439	24972453
Sample Types -	Possible Cus Sample ple Types -		r rence			BH1			BH2			SP1			SP2			SP3			SW1	SW2
S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	1	AGS Reference																				
PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage						0.00 - 0.00			0.00 - 0.00			0.00 - 0.00			0.00 - 0.00			0.00 - 0.00			0.00 - 0.00	0.00 - 0.00
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other		Containe	r	1lplastic (ALE221)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	1lplastic (ALE221)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	1 lplastic (ALE221)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	1lplastic (ALE221)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	1lplastic (ALE221)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	1lplastic (ALE221)
		Sample Ty	ре	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	SM	WS	WS	WS
Alkalinity as CaCO3		All	NDPs: 0 Tests: 8	x			x			x			x			x			x			x
Ammoniacal Nitrogen		All	NDPs: 0 Tests: 8		x			X			x			x			x			x		
Anions by ion Chromatograph	y	All	NDPs: 0 Tests: 8	x			x			x			x			x			x			x
Anions by Kone (w)		All	NDPs: 0 Tests: 8	x			x			x			x			x			x			x
Conductivity (at 20 deg.C)		All	NDPs: 0 Tests: 8	x			x			x			x			x			x			x
Dissolved Metals by ICP-MS		All	NDPs: 0 Tests: 8			x			X			x			x			x			x	
Phosphate by Kone (w)		All	NDPs: 0 Tests: 8	x			x			x			x			x			x			x

		2497;			2497;
		2453			2460
		SW2			SW3
		0.00 - 0.00			0.00 - 0.00
	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	1lplastic (ALE221)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)
	WS	SW	SW	WS	WS
			X		
2	x			X	
			x		
			x		
			X		
		X			X
			x		

SDG: 210914-80 Client Ref.: 3330-COC1

CERTIFICATE OF ANALYSIS Report Number: 614351

Location: Marlet - Balscadden

613762 Superseded Report:

Validated

Results Legend		Cu	stomer Sample Ref.	RH1	BH2	SP1	SP2	SP3	SW1
# ISO17025 accredited.				Ditt	UNZ	011	012	010	0111
M mCERTS accredited. ag Agueous / settled sample.									
diss.filt Dissolved / filtered sample.			Depth (m)	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00
tot.unfilt Total / unfiltered sample.			Sample Type	Ground Water (GW)	Surface Water (SW)				
 Subcontracted - refer to subcontractor report for accreditation status. 			Date Sampled	13/09/2021	13/09/2021	13/09/2021	13/09/2021	13/09/2021	13/09/2021
** % recovery of the surrogate standard to check the			Sample Time	00:00	00:00	00:00	00:00	00:00	00:00
efficiency of the method. The results of individual			Date Received	14/09/2021	14/09/2021	14/09/2021	14/09/2021	14/09/2021	14/09/2021
recovery			SDG Ref	210914-80	210914-80	210914-80	210914-80	210914-80	210914-80
(F) Trigger breach confirmed			Lab Sample No.(s)	24972424	24972431	24972467	24972476	24972482	24972439
1-4+5@ Sample deviation (see appendix)			AGS Reference						
Component	LOD/U	Jnits	Method	A					
Alkalinity, Total as CaCO3	<2 m	ng/l	TM043	355	300	115	305	315	155
				#	#	#	#	#	#
Ammoniacal Nitrogen as N	< 0.2	ma/l	TM099	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
-		3		#	#	#	#	#	#
				#	#	#	#	#	#
Ammoniacal Nitrogen as NH4	<0.3 i	mg/l	TM099	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
				#	#	#	#	#	#
Conductivity @ 20 deg.C	<0 (12	TM120	0.86	0.803	0.30	0.936	0.89	37.8
, , , , , , , , , , , , , , , , , , ,	mS/c		111120	0.00 #	0.000 #	0.00 #	0.000 #	0.00 #	01.0 #
	1113/0	311		#	#	#	#	#	#
Manganese (diss.filt)	<3 µ	ıg/l	TM152	43.7	6.9	<3	<3	9.69	<18
				#	#	#	#	#	#
Phosphorus (diss filt)	<10 ו	ua/l	TM152	<10	<10	<10	<10	23.9	78.6
	101	μg/i	TIVITUZ	10	10 "	10	10	20.0	10.0
				#	#	#	#	#	#
Sodium (Dis.Filt)	<0.076	6 mg/l	TM152	42.3	44.3	22.1	56.4	93.7	8940
				#	#	#	#	#	#
Magnesium (Dis Filt)	~0.000	ma/	TM150		10.0	۳ ۵۵ ۲	20 5	10.5	1000
iviayitesiuiii (Dis.FIIL)	<0.036	o mg/l	11/1152	20.5	10.9	00.0	20.5	19.5	1020
				#	#	#	#	#	#
Potassium (Dis.Filt)	< 0.2	mg/l	TM152	8.36	5.71	2.94	7.27	11.9	299
· · · /	J.2 1	·		#		#	#		#
				#	#	#	#	#	#
Gaicium (Dis.Filt)	<0.2 ו	mg/l	TM152	123	116	52	122	81.4	343
				#	#	#	#	#	#
Iron (Dis.Filt)	<0.019) ma/l	TM152	<0.019	<0.019	<0.019	<0.019	0.0433	<0 114
	-0.010	, mg/i	1111102	-0.010	-0.010	-0.010 #	-0.010	0.0100 #	-0.111
				#	#	#	#	#	#
Sulphate	<2 m	ng/l	TM184	113	66.3	43	58.6	51.7	2240
				#	#	#	#	#	#
Chloride	<2 m	aa/l	TM184	74.1	77.0	33.5	110	115	16300
Chionde	×2 II	ig/i	11/1104	/4.1	11.9	33.5	110	110	10300
				#	#	#	#	#	#
Phosphate (Ortho as P)	<0.02	mg/l	TM184	< 0.02	<0.02	<0.02	<0.02	0.0281	0.079
		U		#	#	#	#	#	#
Nitesta es NIO2	.0.07		TN 1000	π 05.0	π	7.04	π 00.7	π .0.05	π 4.07
Nitrate as NO3	<0.07	mg/i	TM226	35.3	30.2	7.01	30.7	<0.35	4.27
				#	#	#	#	#	#

SDG: 210914-80 Client Ref.: 3330-COC1

CERTIFICATE OF ANALYSIS Report Number: 614351

Location: Marlet - Balscadden

613762 Superseded Report:

Validated

Results Legend		Cu	stomer Sample Ref.	SW2	SW3	T		
# ISO17025 accredited.				0112	0110			
M mCERTS accredited. aq Aqueous / settled sample.								
diss.filt Dissolved / filtered sample.			Depth (m)	0.00 - 0.00	0.00 - 0.00			
tot.unfilt Total / unfiltered sample.			Sample Type	Surface Water (SW)	Surface Water (SW)			
accreditation status.			Date Sampled	13/09/2021	13/09/2021			
** % recovery of the surrogate standard to check the			Sample Time	00:00	00:00			
efficiency of the method. The results of individual compounds within samples aren't corrected for the			Date Received	14/09/2021	14/09/2021			
recovery			SDG Ref	210914-80	210914-80			
(F) Trigger breach confirmed 1-4+S@ Sample deviation (see appendix)			AGS Reference	24312433	24372400			
Component		Inits	Method					
Alkalinity Total as CaCO3	<2 m	na/l	TM0/13	180	150			
	-211	''	1101040	100 #	100	4		
				#	#	+	 	
Ammoniacal Nitrogen as N	<0.2	mg/l	TM099	<0.2	<0.2			
				#	#	#		
Ammoniacal Nitrogen as NH4	<0.3	mg/l	TM099	<0.3	<0.3			
		•		#	#	ŧ		
Conductivity @ 20 deg C	<0.0	יט	TM120		0.457	+	 	
conducting @ 20 dog.c	~0.0 m©/c)Z	1101120	25 #	0.401	4		
	110/0			#	#	+	 	
Manganese (diss.filt)	<3 L	ıg/l	TM152	<3	44.4			
				#	#	ŧ		
Phosphorus (diss.filt)	<10	µg/l	TM152	91.9	54.5			
				#	#	ŧ		
Sodium (Dis.Filt)	<0.076	6 ma/l	TM152	5050	26	Ť		
`´´	0.070	···ə/'		#		μĺ		
Magnosium (Dis Eilt)	~0.000		TAALOO	# 604	0.05	+	 	
waynesium (Dis.Fill)	<0.036	o mg/l	11/152	024	0.00			
				#	#	ŧ		
Potassium (Dis.Filt)	<0.2	mg/l	TM152	175	2.44			
				#	#	ŧ		
Calcium (Dis.Filt)	<0.2	ma/l	TM152	228	66.8	╈		
· · ·	5.2					μĺ		
Iron (Dis Filt)	20.040) ~~ "	TMAEO	#	0.400	╡	 	
iron (Dis.Fiit)	<0.019	9 mg/i	111152	<0.019	0.109			
				#	#	#		
Sulphate	<2 m	ng/l	TM184	1210	50.5			
				#	#	ŧ		
Chloride	<2 m	na/l	TM184	9290	40 1	T		
	-2-11	·9/1	imitor	#		4 L		
Dhaankata (Ortha an D)	0.00		-	#	#	*	 	
Phosphate (Ortho as P)	<0.02	mg/l	IM184	0.0826	0.03			
				#	#	\$		
Nitrate as NO3	<0.07	mg/l	TM226	9.27	6.88			
				#	#	ŧ		
						T		
						+		
						+	 	
						$^{+}$		
						+	 	
						\downarrow		
						Τ		
						+	 	
						+	 	
						4		
						Τ		
						+	 	
						+		
						ſ		
						T		
						+		
						+	 	

Report Number: 614351 Location: Marlet - Balscadden Superseded Report: 613762

Validated

Table of Results - Appendix

Method No	Reference	Description
TM043	Method 2320B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part109 1984	Determination of alkalinity in aqueous samples
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser
TM120	Method 2510B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part 9:1970	Determination of Electrical Conductivity using a Conductivity Meter
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM226	In-House Method	Determination of Anions in Waters using Ion Chromatography

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden.

SDG: 210914-80

Report Number: 614351 Location: Marlet - Balscadden

613762 Superseded Report:

Validated

Test Completion Dates

Lab Sample No(s)	24972424	24972431	24972467	24972476	24972482	24972439	24972453	24972460
Customer Sample Ref.	BH1	BH2	SP1	SP2	SP3	SW1	SW2	SW3
AGS Ref.								
Depth	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00
Туре	Ground Water	Surface Water	Surface Water	Surface Water				
Alkalinity as CaCO3	16-Sep-2021	16-Sep-2021	16-Sep-2021	16-Sep-2021	16-Sep-2021	16-Sep-2021	16-Sep-2021	16-Sep-2021
Ammoniacal Nitrogen	17-Sep-2021	20-Sep-2021	17-Sep-2021	17-Sep-2021	17-Sep-2021	20-Sep-2021	20-Sep-2021	20-Sep-2021
Anions by ion Chromatography	16-Sep-2021	16-Sep-2021	16-Sep-2021	16-Sep-2021	16-Sep-2021	16-Sep-2021	16-Sep-2021	16-Sep-2021
Anions by Kone (w)	18-Sep-2021	18-Sep-2021	18-Sep-2021	18-Sep-2021	18-Sep-2021	18-Sep-2021	18-Sep-2021	18-Sep-2021
Conductivity (at 20 deg.C)	23-Sep-2021	23-Sep-2021	23-Sep-2021	23-Sep-2021	23-Sep-2021	23-Sep-2021	23-Sep-2021	23-Sep-2021
Dissolved Metals by ICP-MS	17-Sep-2021	17-Sep-2021	17-Sep-2021	17-Sep-2021	17-Sep-2021	18-Sep-2021	18-Sep-2021	17-Sep-2021
Phosphate by Kone (w)	15-Sep-2021	15-Sep-2021	15-Sep-2021	15-Sep-2021	15-Sep-2021	15-Sep-2021	15-Sep-2021	15-Sep-2021

	SDG:	210914-80 Marlet Delegadden	Client Reference:	3330-COC1	Report Number:	614351
(ALS)	Location:	Manet - Baiscauden	Order Number:		Superseded Report.	013702

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35° C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

6. NDP - No determination possible due to insufficient/unsuitable sample.

7. Results relate only to the items tested.

8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

9. **Surrogate recoveries** - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.

10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

12. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17 Data retention. All records, communications and reports pertaining to the analysis are archived for seven years from the date of issue of the final report.

18. **Tentatively Identified Compounds (TICs)** are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

19. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
•	Sample holding time exceeded in laboratory
0	Sample holding time exceeded due to late arrival of instructions or
	samples
§	Sampled on date not provided

20. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining.

Asbe stos Type	Common Name
Chrysofile	White Asbestos
Amosite	Brow n Asbestos
Cio d dolite	Blue Asbe stos
Fibrous Act nolite	-
Fib no us Anthop hyll ite	-
Fibrous Tremol ite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μ m diameter, longer than 5 μ m and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Minerex Environmental Taney hall Eglinton Terrace Dundrum Dublin Dublin 14

Attention: Chris Fennell

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528700 Fax: (01244) 528701 email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

CERTIFICATE OF ANALYSIS

Date of report Generation: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: Order Number: 14 October 2021 Minerex Environmental 211007-123 3330-COC2 Marlet - Balscadden 617204

We received 2 samples on Thursday October 07, 2021 and 2 of these samples were scheduled for analysis which was completed on Thursday October 14, 2021. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden.

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

Sonia McWhan Operations Manager

ALS Life Sciences Limited. Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No. 4057291. Version: 3.1 Version Issued: 14/10/2021

SDG: 211007-123

Client Ref.: 3330-COC2

CERTIFICATE OF ANALYSIS

Report Number: 617204 Location: Marlet - Balscadden Superseded Report:

Validated

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
25113801	BH1		0.00 - 0.00	06/10/2021
25113808	BH2		0.00 - 0.00	06/10/2021

Only received samples which have had analysis scheduled will be shown on the following pages.

Superseded Report:

SDC Client Ref	3 : 211007-123 f.: 3330-COC2			Report Number: 617204 Location: Marlet - Balsc			Balscadden		
Results Legend X Test N No Determination	Lab Sample	Lab Sample No(s)			25113801				
Possible	Custom Sample Ref	ier erence			BH1			BH2	
Sample Types - S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate PL - Prenared Leachate	AGS Refer	rence							
PL - Propared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Depth (m)	0.00 - 0.00						
	Contain	ier	1lplastic (ALE221)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	1lplastic (ALE221)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	
	Sample T	уре	GW GW GW		GW				
Alkalinity as CaCO3	All	NDPs: 0 Tests: 2	x			x			
Ammoniacal Nitrogen	All	NDPs: 0 Tests: 2		x			x		
Anions by ion Chromatography	All	NDPs: 0 Tests: 2	x			x			
Anions by Kone (w)	All	NDPs: 0 Tests: 2	x			x			
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 2			x			x	
Phosphate by Kone (w)	All	NDPs: 0 Tests: 2	X			x			

SDG: 211007-123 **Client Ref.:** 3330-COC2

CERTIFICATE OF ANALYSIS Report Number: 617204

Location: Marlet - Balscadden

Superseded Report:

 Results Legand

 # ID01702accredited.

 M mCRTS accredited.

 aq.ueous / settled sample.

 diss.fitD isobvold? filterod sample.

 tot.unfilterod sample.

 sccreditation status.

 * Subcontractor report for accreditation status.

 * Greenery of the surgate standard to check the efficiency of the method. The results of individual compounds within samples arent corrected for the results of individual compounds within samples arent.
 Results Legend Customer Sample Re BH2 BH1 Depth (m) 0.00 - 0.00 0.00 - 0.00 Sample Type Date Sampled Ground Water (GW) 06/10/2021 Ground Water (GW) 06/10/2021 Sample Time 00:00 00:00 07/10/2021 07/10/2021 Date Receive SDG Ret 211007-123 211007-123 recovery (F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix) 25113801 25113808 Lab Sample No.(s) AGS Reference LOD/Units Method Component Alkalinity, Total as CaCO3 348 390 <2 mg/l TM043 # # Ammoniacal Nitrogen as N <0.2 mg/l TM099 < 0.2 <0.2 # # Ammoniacal Nitrogen as NH4 <0.3 mg/l TM099 <0.3 <0.3 # # Manganese (diss.filt) <3 µg/l TM152 5.78 <3 # # Phosphorus (diss.filt) TM152 <10 µg/l <10 <10 # # Sodium (Dis.Filt) <0.076 mg/l TM152 42.5 42.4 # # Magnesium (Dis.Filt) <0.036 mg/l TM152 20 19 # # Potassium (Dis.Filt) <0.2 mg/l TM152 9.71 5.5 # # Calcium (Dis.Filt) TM152 126 122 <0.2 mg/l # # Iron (Dis.Filt) <0.019 <0.019 mg/l TM152 <0.019 # # Sulphate <2 mg/l TM184 113 66.5 # # Chloride TM184 <2 mg/l 80 81 # # Phosphate (Ortho as P) <0.02 mg/l TM184 < 0.02 < 0.02 # # Nitrate as NO3 TM226 <0.07 mg/l 37.1 29.4 # #

Validated

Superseded Report:

CERTIFICATE OF ANALYSIS Report Number: 617204

SDG: 211007-123 Client Ref.: 3330-COC2

Location: Marlet - Balscadden Table of Results - Appendix

Method No	Reference	Description
TM043	Method 2320B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part109 1984	Determination of alkalinity in aqueous samples
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM226	In-House Method	Determination of Anions in Waters using Ion Chromatography

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden.

Report Number: 617204 Location: Marlet - Balscadden

Superseded Report:

Test Completion Dates

Lab Sample No(s)	25113801	25113808
Customer Sample Ref.	BH1	BH2
AGS Ref.		
Depth	0.00 - 0.00	0.00 - 0.00
Туре	Ground Water	Ground Water
Alkalinity as CaCO3	11-Oct-2021	11-Oct-2021
Ammoniacal Nitrogen	12-Oct-2021	12-Oct-2021
Anions by ion Chromatography	12-Oct-2021	12-Oct-2021
Anions by Kone (w)	11-Oct-2021	11-Oct-2021
Dissolved Metals by ICP-MS	14-Oct-2021	14-Oct-2021
Phosphate by Kone (w)	11-Oct-2021	11-Oct-2021

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35° C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

6. NDP - No determination possible due to insufficient/unsuitable sample.

7. Results relate only to the items tested.

8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

9. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.

10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

12. For dried and crushed preparations of soils volatile loss may occur e.g volatile mercury.

13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17 Data retention. All records, communications and reports pertaining to the analysis are archived for seven years from the date of issue of the final report.

18. **Tentatively Identified Compounds (TICs)** are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

19. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
•	Sample holding time exceeded in laboratory
0	Sample holding time exceeded due to late arrival of instructions or
W	samples
§	Sampled on date not provided

20. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining.

Asbestos Type	Common Name
Chrysof le	White Asbestos
Amosite	Brow n Asbestos
Cro ci dolite	Blue Asbe stos
Fibrous Act nolite	-
Fibrous Anthophyllite	-
Fibrous Tremolite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μm diameter, longer than 5 μm and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

BYRNELOOBY

Appendix C – 2021 Ground Investigation

S.I. Ltd Contract No: 5836

Client: Engineer: Contractor: Marlet Waterman Moylan Site Investigations Ltd

Balscadden, Howth, Co. Dublin Site Investigation Report

Prepared by:

Stephen Letch

Issue Date:	13/07/2021
Status	Final
Revision	2

Con

ntents:		Page No.
1.	Introduction	1
2.	Site Location	1
3.	Fieldwork	1
4.	Laboratory Testing	3

Appendices:

- 1. Cable Percussion Borehole Logs
- Trial Pit Logs and Photographs 2.
- Geotechnical Laboratory Test Results 3.
- 4. Survey Data

1. Introduction

On the instructions of Waterman Moylan, Site Investigations Ltd (SIL) was appointed to complete a ground investigation at Balscadden, Howth, Co. Dublin. The investigation was completed for a residential development on the site and was completed on behalf of the Client, Marlet. The investigation was completed in June 2021.

2. Site Location

The site is located on the Balscadden Road, Howth, Co. Dublin, on the Howth peninsula to the east of Dublin city. The map of the Dublin (below left) shows the location of Howth and the second map shows the boundary of the site in Howth.

3. Fieldwork

The fieldworks comprised a programme of cable percussive boreholes and trial pits. All fieldwork was carried out in accordance with BS 5930:2015, Engineers Ireland GI Specification and Related Document 2nd Edition 2016 and Eurocode 7: Geotechnical Design.

The fieldworks comprised the following:

- 3 No. cable percussive boreholes
- 3 No. trial pits

3.1. Cable Percussion Boreholes with Rotary Coreholes

Cable percussion boring was undertaken at 3 No. locations using a Dando 150 rig and constructed 200mm diameter boreholes. The boreholes terminated at depths ranging from 13.00mbgl (BH03) to 17.20mbgl (BH02) when obstructions were encountered. It was not possible to collect undisturbed samples due to the granular soils encountered so bulk disturbed samples were recovered at regular intervals.

To test the strength of the stratum, Standard Penetration Tests (SPT's) were performed at 1.00m intervals in accordance with BS 1377 (1990). In soils with high gravel and cobble content it is appropriate to use a solid cone (60°) (CPT) instead of the split spoon and this was used throughout the testing. The test is completed over 450mm and the cone is driven 150mm into the stratum to ensure that the test is conducted over an undisturbed zone. The cone is then driven the remaining 300mm and the blows recorded to report the N-Value. The report shows the N-Value with the 75mm incremental blows listed in brackets (e.g., BH01 at 1.00mbgl where N=17(2,4/4,5,4,4). Where refusal of 50 blows across the test zone was encountered was achieved during testing, the penetration depth is also reported (e.g., BH01 at 13.00mbgl where N=50-(25 for 125mm/50 for 90mm)).

Groundwater monitoring standpipes were installed, upon instruction from Minerex Ltd, and consisted of slotted pipe surrounded by a gravel response zone with bentonite seals.

The cable percussive borehole logs are presented in Appendix 1.

3.2. Trial Pits

3 No. trial pits were excavated using a wheeled excavator. The strata were logged and photographed by SIL geotechnical engineer and groundwater ingresses and pit wall stability was also recorded. Representative disturbed bulk samples were recovered as the pits were excavated, which were returned to the laboratory for geotechnical testing.

The trial pit logs and photographs are presented in Appendix 2.

3.3. Surveying

Following completion of all the fieldworks, a survey of the exploratory hole locations was completed using a GeoMax GPS Rover. The data is supplied on each individual log and along with a site plan in Appendix 4.

4. Laboratory Testing

Laboratory testing has been performed on representative soil samples, as scheduled by ByrneLooby, and these were completed in accordance of BS1377: 1990 or the relevant specification. Testing included:

- 2 No. Moisture contents
- 2 No. Atterberg limits
- 8 No. Particle size gradings
- 5 No. pH
- 5 No. Water soluble sulphate

Specialist geotechnical testing was completed on the samples by NMTL Ltd and consisted of the following:

• 1 No. Shear box

The soil laboratory test results are presented in Appendix 3.

Appendix 1 Cable Percussive Borehole Logs

Contra 58	ict No: 36	Cable Pe	Borehole No: BH01													
Contrac	ot:	Balscadden			Easting	g:	728766	6.929		Date Started:	16/06	/2021				
Locatio	n:	Howth, Co. Dublin			Northin	ıg:	739199	9.986		Date Completed:	18/06	8/06/2021				
Client:		Marlet			Elevati	on:	19.98			Drilled By: J. C		O'Toole				
Engine	er:	Waterman Moylan			Boreho Diamet	ole ter:	200mm	ו		Status: FIN		INAL				
Depth	h (m)	Stratum Description			Legend	Level	(mOD)	Sam	ples	and Insitu Tes	ts	Water	Backfill			
Scale	Depth	MADE GROUND: tarmacadam.				Scale _	Depth	Depth	Туре	e Result		Suike				
0.5	0.50	MADE GROUND: grey silty sandy gra	avel.	ow		- - 19.5 —	19.48									
		cobble content.		000	° × ° ° × °			1 00		10704		•				
1.0										N=17 (2,4/4,	5,4,4)	•				
1.5 _																
2.0					a X, a X, 0	- - 18.0 —		2.00	В	JOT02		4 - -				
-					م × ، ، م × ، ه م × ، ، م × ، ه		-	2.00	С	N=12 (1,2/2,	3,3,4)					
2.5	2 80				0 × ۲۰ م م × ۲۰ م	17.5 -	17 18									
3.0 -	2.00	Loose becoming medium dense light gravelly SAND.	brown silty			17.0 —	17.10	3.00	B	JOT03	0 2 21					
3.5 —						- - 16.5 —	-	5.00	C	IN-7 (1,1/1,2	-, ~, ~)					
-						-	-									
4.0						16.0 — 	-	4.00 4.00	B C	JOT04 N=15 (1,2/3,	3,4,5)					
4.5					15.5	- - 15.5 -										
							-	F 00		10705						
5.0										5.00 5.00	С В	N=20 (2,2/3,	4,6,7)			
5.5 -	5.50	Light brown slightly silty gravelly SAND.			Light brown slightly silty gravelly SAND.				14.5	14.48						
6.0 -	6.00	Mar d'anna da anna ha anna fa an d'anna d'anna d'anna d		41		14.0 —	13.98	6.00	В	JOT06						
		silty gravelly SAND.	brown sligr	ntiy		-		6.00	С	N=21 (2,2/4,	5,6,6)					
6.5 —						13.5										
7.0						13.0	-	7.00	В	JOT07	7 7 0)					
75						- - 12 5 -	-	7.00	C	N=28 (2,4/5,	7,7,9)	•				
-						-						•				
8.0						12.0 —	-	8.00 8.00	B C	JOT08 N=30						
8.5 —						- 11.5 —				(1,3/6,7,7,	10)					
									5	10700						
9.0								9.00 9.00	C R	JOT09 N=36	11)					
9.5 —						10.5 -				(2,4/7,9,9,	11)	4				
								10.00	B	JOT10		4				
		Chiselling: Water Strikes:	Water Detai	ls:	Instal	lation:	E	Backfill:		Remarks:	Legend:					
d		From: To: Time: Strike: Rose: Depth Sealed D	Ate: Hole Depth:	Water Depth:	From: T	o: Pipe	: From: 1	To: Type	: E	orehole terminated due		B: Bulk D: Disturbed				
C.		16.40 16.50 00:45 17 16.80 17.00 01:00 18	7/06 12.30 8/06 17.00	Dry Dry Dry	14.00 17	.00 Slotte	ed 0.70 12 12.00 13 13.00 17	2.00 Grave 3.00 Benton 7.00 Grave	ite	- 5864 404011		ES: Enviro W: Water C: Cone S	nmental PT			

Contrac 583	ct No: 36	Cable Percus	Borehole No: BH01									
Contrac	t:	Balscadden		Eastin	g:	728766	6.929		Date Started:	16/06	6/06/2021	
Locatior	ו:	Howth, Co. Dublin		Northi	ng:	739199	9.986		Date Completed:	18/06	18/06/2021	
Client:		Marlet		Elevat	ion:	19.98			Drilled By:	J. O'T	O'Toole	
Enginee	er:	Waterman Moylan		Boreh Diame	ole ter:	200mm	ı		Status:	FINA	AL	
Depth	(m)	Stratum Description		Legen	Level	(mOD)	Sar	nples	and Insitu Tes	u Tests		Backfill
Scale	Depth	Medium dense becoming dense light brown slig	ghtly		Scale	Depth	Depth 10.00	Type C	Result N=18 (2,3/4,4	4,5,5)	Suike	
10.5	10.50	silty gravelly SAND. Verv stiff brown slightly sandy gravelly silty CLA	Y with		9.5 -	9.48						
11.0		low cobble content and bands of gravelly sand.				-	11 00	в	JOT11			
						-	11.00	C	N=24 (3,4/5,	6,6,7)		
11.5 — — —				8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8.5 – - -							
12.0					8.0 -	-	12.00	B	JOT12 N=35			
- - 12.5 —				x x		-	12.00	Ũ	(4,5/7,9,9,	10)		
				<u>x</u> x x x x x x x x x x x x x x x x x x	- - - - -	-	10.00	P	10742			
13.0						-	13.00	C	50 (25 fc 125mm/50	or) for		
13.5 —				<u>x o</u>	6.5 – 	-			90mm)			
14.0					6.0 -	-	14.00	В	JOT14	O for		
- - 14.5 -						-	14.00	C	235mm)		
				x	- Vert	-						
15.0					e 5.0 — 	-	15.00 15.00	B C	JOT15 50 (10,15/5	0 for		
15.5 -				<u>x o</u>	4.5 – 	-			125mm)		
16.0				8-0-0 8-0-0 8-0-0	4.0-	-	16.00	В	JOT16			
16.5						-	16.00	С	50 (11,14/5 100mm	0 for)		
	16.80	Obstruction - possible boulders			 - 	3.18						
17.0	17.00	End of Borehole at 17.00m			- 3.0	2.98	17.00	С	50 (25 fc 5mm/50 for \$	or 5mm)		
17.5 —					2.5 -	-						
18.0					2.0	-						
						-						
18.5						-						
19.0					1.0 -	-						
19.5					0.5 -	-						
					-							
		Chiselling: Water Strikes: Water Deta	ails:	Insta	llation:		Backfill:		Remarks:	Legend:		
		From: To: Time: Strike: Rose: Depth Sealed Date: Hole Depth: 15.00 15.20 00:45	Water Depth: F	From: 7 0.00 14 14.00 17	Fo: Pipe 1.00 Soli 7.00 Slotte	e: From: d 0.00 0 ed 0.70 12 12.00 13 13.00 1	To: Typ 1.70 Bento 2.00 Grav 3.00 Bento 7.00 Grav	vel vel vel vel vel	orehole terminated obstruction.	d due	D: Bulk D: Disturb U: Undistu ES: Enviro W: Water C: Cone S S; Split sp	ed urbed onmental SPT boon SPT

Contra 58	act No: 36	Cable Percussion Borehole Log														Borehole No: BH02			
Contrac	ct:	Balscadden							East	ting:		72879	1.582		Da	ate Started:	21/06	1/06/2021	
Locatio	on:	Howth, Co. Dubli	n						Nort	hing	:	73916	3.531		Da Co	ate ompleted:	23/06/2021		
Client:		Marlet							Elev	atio	n:	19.58			Dr	Drilled By:		J. O'Toole	
Engine	er:	Waterman Moyla	n						Bore Diar	Borehole Diameter:		200mm			St	Status: FIN		INAL	
Dept	h (m)		Stratur	n Des	scripti	on			Lege	end	_evel ((mOD)	DD) Samples			nd Insitu Tes	sts	Water	Backfill
Scale	Depth	MADE GROUND	D: tarmacadam.							***	Scale 19.5 –	Depth	Dep	epth Type		Result		Ounce	
0.5	0.20	Grey slightly silty	very sa	andy (GRAV	/EL.			~~~× ×-~×	×	19.0	19.50							
1.0									× × × ×	×	-		1.0) B		IOT17	,		
-									× × ×	×	18.5 —		1.0		٢	N=12 (1,2/2	,3,3,4)		
1.5 —									×××	***	18.0								
2.0									×××	×	17.5		2.0			JOT18	3 4 4 4)		
2.5 —									× × ×	×	- - 17 0		2.0		ľ	10 (2,0/0	, , , , , , , ,		
	2.00								×××	×.		16 59	2.0				`		
3.0	3.00	Loose becoming gravelly SAND.	mediur	m den	ise br	own s	ilty ve	ry	××××	** **	16.5 — —	10.58	3.0		٢	N=10 (1,1/2	,2,3,3)		
3.5 -									× × ×	×	16.0								
4.0									××××	~ *X	- - 15.5 —		4.0	В)		
4.5 -									× × × ×	*X. *X.	-		4.0			N=8 (2,2/2,	2,2,2)		
-									× × ×	*×.	15.0 —								
5.0									××××	*X •X	14.5 –		5.0 5.0) B) C	1	JOT21 N=11 (2,2/3	3,2,3)		
5.5 -									× × ×	•X.	14.0								
6.0 -									× × ×	***			6.0) в		JOT22	2		
									××××	×	-		6.0			N=8 (2,1/2,2	2,2,2)		
0.0									× × ×	•X.	13.0								
7.0									×××	*X.	12.5 —		7.0 7.0) B) C	1	JOT23 N=11 (3,3/2,	3 (3,3,3)		
7.5									× × × ×	•× •×	12.0								
8.0									× × ×	•×.			8.0) в		JOT24	Ļ		
									×××	•×,			8.0) c	٦	N=15 (3,3/4	,4,3,4)		
8.5 — — —	8.50	Medium dense be gravelly SAND.	ecomin	ıg den	ise lig	ht bro	wn sil	ty			11.0	11.08							
9.0											10.5		9.0) B	r	JOT25 N=13 (2.2/3	; .3.3.4)		
9.5											10.0				ľ		/		
-	9.70	Very stiff brown s	lightly	sandy	grav	elly si	Ity CLA	AY with		o X	-	9.88	10.0						
		Chiselling: Water Strikes: W		W/a	ter Det	ails.	Inc	talla	tion [.]		Backfi		JU126		C Legend				
	J)	From: To: Time: 17.10 17.20 01:00	Strike:	Rose:	Depth Sealed	Date: 21/06 22/06 23/06	Hole Depth: 3.00 12.00 17.20	Water Depth: Dry Dry Dry Dry	From: 0.00 9.00	To: 9.00 17.2	Pipe Solic Slotte	: From: d 0.00 ed 1.00 7.00 8.00 1	To: 1.00 B 7.00 8.00 B 17.20	Type: entonite Gravel entonite Gravel	Bore to ob	ehole terminate	d due	B: Bulk D: Disturb U: Undistu ES: Enviro W: Water C: Cone S	ied urbed onmental SPT

Contra 58	ict No: 36	Cable Percussion Borehole Log														Borehole No: BH02				
Contrac	ot:	Balscaddei	n							Eas	ting	:	72879	91.58	2		Date Started:	21/06	1/06/2021	
Locatio	n:	Howth, Co.	Dubli	n						Nor	thin	g:	73916	3.53	1		Date Completed:	23/06	23/06/2021	
Client:		Marlet								Elev	/atio	on:	19.58				Drilled By:	J. O'1)'Toole	
Engine	er:	Waterman	Moyla	n						Bor	eho met	le er:	200mm				Status: FINA		AL	
Dept	h (m)			Stratu	m De	scripti	on			Lege	end.	Level	(mOD))	Sar	nples	and Insitu Tes	sts	Water	Backfill
Scale	Depth					-					× 0. °	Scale	Depth	De	pth	Туре	Result		Surke	
10.5	10.50	Very stiff br	tly gra	avelly	silty	x x x x x x x x x x		9.5	9.08	10	.00	С	N=38 (6,7/7,9,11	,11)						
11.0								8.5 — 		11. 11.	11.00 11.00	B C	JOT27 N=40 (7,8/9,9,10	,),12)						
11.5										×	\ ×i	8.0		12	.00	В	JOT28			
12.5												7.0		12	.00	С	N=37 (5,7/9,9,9,	,10)		
13.0										×		6.5 — 	-	13 13	.00 .00	B C	JOT29 N=44	1 12)		
13.5												6.0	-	1.1	00	P		1,12)		
14.0	14.60									× 		5.5 — - - 5.0 —	4.98	14	.00	C	N=39 (3,5/7,11,10	0,11)		
15.0 —		Very stiff br low cobble	own s contei	lightly nt and	sandy band	/ grav s of gr	elly sil avelly	ity CL/ / sand	Ay with	x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0		4.5 -		15 15	.00 .00	B C	JOT31 50 (5,11/50) for		
15.5										0 0 0 0 0 0		4.0					60mm))		
16.0										2012012012012012012012012012001200000000	el×iel×iel	3.5		16 16	.00 .00	B C	JOT32 50 (6,12/50 115mm) 0 for)		
17.0	17.10											3.0 — - - 2.5 —	2.48	17	.00	С	50 (23 fc	or		
17.5 —	17.20	Obstruction	<u>ı - pos</u> I	SIDIE I End of E	OOUIDE Borehole	ers. at 17.2	0m					2.0 —	2.38	17	.10	В	95mm/50 5mm) JOT33	tor		
												- - 1.5 — -	-							
18.5 — - -												- 1.0 —								
19.0												0.5 —								
19.5 — - - - -												0.0								
										-					-+					
	-	Chisellir	ng:	Wa	ter Stri	kes:	Wa	ter De	tails:	In	stall	ation:		Back	fill:		Remarks:	Legend:		
		From: To: Time: Strike: Rose: Depth Sealed Date: Hole Depth: I 17.10 17.20 01:00					Water Depth:	From: 0.00 9.00	n: To: Pipe: From: To: Type 0 9.00 Solid 0.00 1.00 Benton 0 17.20 Slotted 1.00 7.00 Benton 7.00 8.00 Grave 8.00 17.20 Grave				oe: B onite to vel onite vel	orehole terminate obstruction.	d due	B: Bulk D: Disturbed U: Undisturbed ES: Environmental W: Water C: Cone SPT S: Split spoon SPT				

Contract	t No: 6		Cable Percussion Borehole Log														B	No: 3			
Contract:	:	Balscac	lden								Eas	ting:		72873	39.24	3		Date Started:	24/06	/06/2021	
Location:	:	Howth,	Co. Dı	ublin							Nor	thing	:	73906	69.59	2		Date Completed:	28/06	28/06/2021	
Client:		Marlet									Elev	Elevation:						Drilled By: J. O ^r		'Toole	
Engineer		Waterm	an Mo	ylan							Bore Diar	ehole nete	e r:	200mm				Status:	FINA	AL	
Depth ((m)			S	Stratu	m De	Description			Lege	end_	Level	(mOD))	Sample		and Insitu Tes	sts	Water	Backfill	
Scale D	0.10	MADE (GROU	ND:	tarm	acada	ım.							Deptr 19.32	n De	pth	Туре	Result		ounto	
0.5	0.60	cobble content and some red brick and concrete fragments. Medium dense light brown silty gravelly SAND.								ium te			19.0	18.82	2						
1.0													18.5		1. 1.	1.00 1.00	B C	JOT34 N=18 (2,3/4	4,5,5)		
1.5 — — —																					
2.0													17.5 —	-	2. 2.	00 00	B C	JOT35 N=21 (2,4/5,	; ,5,5,6)		
2.5 -	2 80													16 62							
3.0		Medium	SAND).			XXX	16.5 —		3. 3.	3.00 B 3.00 C		JOT36 N=23 (4,5/5,	6,6,6)							
3.5 _										× ? × ×	XXX	16.0									
4.0									× × × × × ×	× × ×	15.5 — — —	- - - -	4. 4.	00	B C	JOT37 N=19 (2,4/4	, ,5,5,5)				
4.5											× × × × × ×	×××	15.0 — 	14.52							
5.0 - 4	4.90	Medium	dense	e ligł	nt bro	wn sil	lty gra	velly	SAND	-			14.5 —		5. 5.	00	B C	JOT38 N=15 (2,2/3,	3 4,4,4)		
5.5 -													14.0 —								
6.0													13.5 —	-	6. 6.	00	B C	JOT39 N=24 (2,4/5) ,6,6,7)		
6.5 - 6	6.40	Stiff bro cobble o	wn slig conten	ghtly t.	sanc	ly gra	velly s	ilty Cl	LAY w	ith low			13.0	13.02	2						
7.0											20 20 20 20 20 20 20 20 20 20 20 20 20 2		12.5 —		7. 7.	00 00	B C	JOT40 N=30 (2,5/7,) ,7,7,9)		
7.5 - 7	7.50	Very stil low cob	f black	slig	htly s	sandy	grave	elly silt	y CLA	Y with	0 × 0	e Xie X	12.0	11.92							
8.0											20120 20120 20120	elXIelXI	11.5 —		8. 8.	00 00	B C	JOT41 50 (25 fr	or		
8.5 -											20120	o X e X e	11.0					135mm/50 10mm)) for)		
9.0											0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		10.5	- - - -	9. 9.	00 00	B C	JOT42 50 (5,7/50 100mm) for 1)		
9.5 -											0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	o Xe X	95 -				_				
					147		1		F	1.2					10	.00	В				• • •
)	Chiselling:Water Strikes:Water Details:From:To:Time:Strike:Rose:Depth SealedDate:Hole Depth.Water Depth.12.8013.0001:004.804.506.8024/063.50Dry 25/0610.5010.2128/0613.003.803.803.803.803.803.80								tails: Water Depth: Dry 10.20 3.80	Ins From: 0.00 4.00	Installation From: To: F 0.00 4.00 S 4.00 13.00 SI		e: From: d 0.00 ed 3.00	Back To: 3.00 13.00	kfill: Type: E Bentonite Gravel		Remarks: 3orehole terminated due o obstruction.		Legend: B: Bulk D: Disturbed U: Undisturbed ES: Environmental W: Water C: Cone SPT S: Split snoop SPT	

Contra 583	ct No: 36	Cable Percussio	n Bo	oreł		Borehole No: BH03					
Contrac	ct:	Balscadden	Easting	j :	728739	9.243		Date Started:	24/06	/2021	
Location	n:	Howth, Co. Dublin	Northin	g:	739069	9.592		Date Completed:	28/06	28/06/2021	
Client:		Marlet	Elevati	on:	19.42			Drilled By:	J. O'T	oole	
Enginee	er:	Waterman Moylan	Boreho Diamet	le er:	200mm	ı		Status:	FINAL		
Depth	ו (m)	Stratum Description	Legend	Level	(mOD)	Samp		and Insitu Tes	sts	Water	Backfill
Scale	Depth	Very stiff black slightly sandy gravelly silty CLAX with		Scale	Depth	Depth	Туре	e Result	or	Strike	
10.5		low cobble content.		9.0 —	- - - - - -	10.00	0	125mm/50 110mm) for)		
11.0				8.5 - - - 8.0 -	-	11.00 11.00	B C	JOT44 50 (25 fo 125mm/50	or) for		
11.5			xx x xx xx		-			100mm)		
12.0				7.5 -	-	12.00 12.00	B C	JOT45 50 (25 fc	or		
12.5				7.0	-			115mm/50 25mm)) for		
- - - 13.0	12.80 13.00	Obstruction - possible boulders. End of Borehole at 13.00m		6.5 — -	6.62 6.42	12.80 13.00	B C	JOT46 50 (25 fc 5mm/50 for	or 5mm)		
13.5				6.0	-						
14.0				5.5 – -	-						
14.5				5.0 —	-						
15.0 —				4.5 -	-						
15.5				4.0	-						
16.0				- 3.5 –	-						
16.5				3.0 —	-						
- - 17.0				- 2.5 — -	-						
17.5				2.0	-						
18.0 —				1.5 — 	-						
18.5				1.0	-						
19.0				- 0.5 –	-						
- - 19.5 —				0.0	-						
				- - -0.5 -							
				-4:						Lagar	
A		Criselling: Water Strikes: Water Details:	Install _{-rom} : דו	ation:	e: From	5aCKfill:	e: P	Remarks: Borehole terminated	d due	Legend: B: Bulk	od
		From: To: Time: Strike: Rose: Sealed Date: Depth: Depth: 12.80 13.00 01:00 4.80 4.50 6.80 Image: Comparison of the sealed of		00 Soli 00 Slotte	d 0.00 3 ed 3.00 13	3.00 Bento 3.00 Grav	onite to vel	o obstruction.	truction. U: Undisturbe ES: Environm W: Water C: Cone SPT S: Shilt epop		

Appendix 2 Trial Pit Logs and Photographs
Contra 5	act No: 836		1	rial Pit	Log					Trial Pit No: TP01		
Contra	act:	Balscadden		Ea	sting:	728786	6.136		Date:		15/06/20	21
Locat	ion:	Howth, Co. Dublin		No	orthing:	739106	6.863		Excavato	or:	JCB 3C>	< colored and set of the set of t
Client	:	Marlet		Ele	evation:	29.92			Logged I	By:	M. Kalisk	i
Engin	eer:	Waterman Moylan		Dir (Lx	mensions ‹WxD) (m):	2.50 x	1.10 x	2.50	Status:		FINAL	
Level	(mbgl)	1	Stratum Descriptio	on		Legend	Level	(mOD) Sam	oles /	Field Tes	ts Water
Scale:	Depth		•				Scale:	Depth	n: Depth	Тур	e Res	ult Strike
	0.05	TOPSOIL. Brown silty slightly gra content and some gra subrounded to rounde subrounded to rounde	avelly fine to coarse S avel laminas. Gravel i ed of various lithologi ed of various lithologi	SAND with low co s fine to coarse, es. Cobbles are es.		껲칱놰칱궠녙눱칱넊섴칱칰빝칰닅슻닅슻닅슻닅쑵닅슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻 쇘쇗컙겋벾쇗넊쇗벾쇗벾쇗벾쇗벾쇗벾쇗벾쇗벾쇗벾쇗븮챓챵븮챓왢슻븮잫븮챓걙곜곜곜슻슻슻		29.87	1.00	в	МКС	01
	2.50		Pit terminated at 2.50	m			- 27.5 - - - 27.0 - -	27.42	2 2.50	В	МКС)2
		Termination.	Pit Wall Stability	Groundwater Ra	ate [:] Remar	·ks·			Kev			
		Scheduled depth.	Pit walls stable.	-				B = D = CBR ES =	Bulk Sma = Unc Envir	disturbed III disturbe listurbed (onmental	d CBR	

Contr 5	act No: 836		1	rial Pit L	og						Trial Pit No TP02		
Contr	act:	Balscadden		Easti	ng:	728754	4.368		Date:		15/06/2021		
Locat	ion:	Howth, Co. Dublin		North	ing:	739110	0.303		Excavato	r: 、	JCB 3CX		
Client	t:	Marlet		Eleva	ition:	23.98			Logged B	sy: I	V. Kaliski		
Engin	ieer:	Waterman Moylan		Dime (LxW	nsions xD) (m):	2.90 x	1.10 >	(2.70	Status:	I	FINAL		
Level	(mbgl)	1	Stratum Descriptio	on		Legend	Level	(mOD) Samp	oles / F	Field Tests	Water	
Scale:	Depth	TOPSOIL					Scale:	Depth	n: Depth	Тур	e Result	Strike	
_	0.20						-	23.79	2				
	0.20	Brown silty very grave content and some gra subrounded to rounde subrounded to rounde GROUND: traces of p	elly fine to coarse SA avel laminas. Gravel i ed of various lithologi ed of various lithologi plastic identified in pit	ND with low cobble s fine to coarse, es. Cobbles are es. (Possible MADE).	e 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1	섮놂눱눱눱쑵넊섴슻섴슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻 뢒꼊빍꼊빍꼊빍꼊빍꼊빍꼊빍꼊빍꼊빍꼊빍꼊빍꼊빍쭝빍쭝빍꼊빍꼊빍꼊빍꼊빍꼊빍꼊빍	- 23.5 - - - - - - - - - - - - - - - - - - -	23.70	1.00	в	МК05		
2.0					<u>1.% 1.% 1.% 1.% 1.% 1.% 1.% 1.% 1.% 1.% </u>	43, 43, 43, 44, 43, 44, 43, 44, 44, 44,	- -	-	2.00	В	МК06		
-	2.70		Pit terminated at 2.70	m		4	-	21.28	3				
-							-	1					
-							21.0	-					
3.0							21.0-	_					
		Termination:	Pit Wall Stability	Groundwater Rate	Rema	rks:			Kev:				
		Scheduled depth.	Pit walls stable.	-				B = D = CBR ES =	Bulk Smal = Undi Enviro	disturbed I disturbed isturbed CBR nmental			

Contra 5	act No: 836		1	rial Pit L	og							Trial Pit TP0	No: 3		
Contra	act:	Balscadden		East	ing:	728736	6.781		Date:		15	/06/2021			
Locat	ion:	Howth, Co. Dublin		North	ning:	739134	1.128		Excava	tor:	JC	B 3CX			
Client	:	Marlet		Eleva	ation:	20.47			Loggeo	l By:	M.	Kaliski			
Engin	eer:	Waterman Moylan		Dime (LxW	ensions /xD) (m):	2.50 x	1.10 x	3.00	Status:		۶I	NAL			
Level	(mbgl)		Stratum Description	on		Legend	Level	(mOD) Sar	nples /	/ Fie	ld Tests	Water		
Scale:	0.05	TOPSOIL.					Scale:	20.42		n Iy	pe	Result			
_		MADE GROUND: gre cobble content and so	ey brown silty very gra ome plastic fragments	avelly sand with lov S.	v		-	-							
	0.20	Brown silty gravelly fir Gravel is fine to coars	ne to coarse SAND w se, subrounded to rou	rith some gravel lar Inded of various	minas.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-	20.27	,						
		lithologies.	,		×	× × × × × × ×	-	_							
0.5					×	^ × _ × × × · × · ×	20.0 —	-							
0.0						× × × ×	-	-							
					(i se	××××	-	_							
					i i xi i i	^ × _ × _ × × · × · ×	-	-							
	0 90				×	× × × ×	-	10 57	,						
10-	0.00	Grey brown silty very cobble content. Grave	gravelly fine to coars el is fine to coarse, su	e SAND with medi brounded to round	um led of		19.5 —	-	1.00) F	3	MK03			
		various lithologies. Co lithologies.	obbles are subrounde	ed to rounded of va	rious 🕴		-	-	1.00			NII (00			
		initiologico:			20 Y 20		-	-							
					1.86.1		-	-							
					51 <u>(</u> ¥0)		-	_							
1.5 -					20 Y 19 20		19.0 —	-							
					1. X		-	-							
					17 X 17		-	-							
_					14 14 14		-	_							
					1. X		=	-							
2.0 —					17 X 17		18.5 —	-	2.00) E	3	MK04			
					%. ***		-	-							
					1. N. N.		-	-							
_					17 X 17		-	-							
_					14 14 14		-	-							
2.5 —					19.X.		18.0 —	-							
_					19 19 19		-	-							
-					20 Y 19 20		-	-							
_					1. 		-	-							
_					1980 P		-	-							
3.0 —	3.00		Pit terminated at 3.00	m	×		17.5 —	17.47	,						
_							-	-							
							=	-		_					
/		Termination:	Pit Wall Stability:	Groundwater Rate	e: Remar	rks:		·	Ke	y:			·		
(Scheduled depth.	Pit walls stable.	Dry	-				B = D =	= Bul = Sm	k dis all d	turbed isturbed			
6	2								CB ES	BR = Undisturbed CBR S = Environmental					

TP01 Sidewall

TP01 Spoil

TP02 Sidewall

TP02 Spoil

TP03 Sidewall

TP03 Spoil

Appendix 3 Geotechnical Laboratory Test Results

Classification Tests in accordance with BS1377: Part 4

Client	Marlet
Site	Balscadden, Howth
S.I. File No	5836 / 21
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email info@siteinvestigations.ie
Report Date	6th July 2021

Hole ID	Depth	Sample	Lab Ref	Sample	Natural	Liquid	Plastic	Plastic	Min. Dry	Particle	%	Comments	Remarks C=Clay;
		No	No.	Туре	Moisture	Limit	Limit	Index	Density	Density	passing		M=Silt Plasticity:
					Content	%	%	%	Mg/m^3	Mg/m^3	425um		L=Low; I=Intermediate;
					%				Ũ	e			H =High; V =Very High;
													E=Extremely High
BH01	12.00	JOT12	21/838	В	12.1	34	20	14			63.2		CL
BH02	16.00	JOT32	21/842	В	18.5	38	24	14			50.9		CI

BS Sieve	Percent	Hydrometer	analysis																				
size, mm	passing	Diameter, mm	% passing] 1	00								- 1						411				Π
100	100	0.0630]														\square					
90	100	0.0200]	90 -												I +						
75	100	0.0060]												/	1						
63	100	0.0020]	80																		
50	100				00											/							
37.5	100																						
28	100]	70																		111
20	100																						
14	100			sing	60 +										H_{\prime}								+++
10	100			Pas									- 1										
6.3	98			ge	50 -								-		∦			++					++
5.0	97.4			nta																			
2.36	93.1			l or	40																		
2.00	91.9			۳ ۳	-0																		
1.18	73.2				~																		
0.600	50.9				30 -																		111
0.425	41.4												X										
0.300	32.3				20 -													++					+++
0.212	25.8											W.											
0.150	20.3				10 -						+	1	_					++					+++
0.063	10]																			
		1			0																		Щ
Cobbles, %	0				0.001	1		0.0	01			0.1				1			1	0			100
Gravel, %	8																						-
Sand, %	82				LAY	Fine	I	Mediu	m C	oarse	Fi	ne	Me	dium	C	oarse	Fine		Mediu	um	Coarse	÷	bble
Clay / Silt, %	10				5			SI	LT					SAND					GR	AVEL			റ
Client :			Marlet								L	ab. N	lo :	21	/83	6			Ho	le ID	:	BH ()1
Project :		Ba	lscadden, Ho	owth							Sam	ple N	lo :	JC	DT04	4			Dept	th, m	:	4.00	0
	1		NID						•			-					•				•		

Material description :	silty gravelly SAND
Pamarka :	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Kelliarks.	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis															
size, mm	passing	Diameter, mm	% passing		100 —													
100	100	0.0630																
90	100	0.0200			90 -												4	
75	100	0.0060																
63	100	0.0020			80													
50	100				00													
37.5	100																	
28	100				70													
20	94.7			5											\boldsymbol{Y}			
14	89.9			sing	60 —										4			
10	85.2			Pas														
6.3	79.2			ge I	50 -													
5.0	75.9			nta														
2.36	65.6			rce	10									XIII -				
2.00	63.4			Pe	40 —								$\top I$					
1.18	53.9																	
0.600	40.5				30 -								$\wedge \uparrow$					
0.425	32.8																	
0.300	25.6				20 -							_/+						
0.212	20.4																	
0.150	15.3				10 -													
0.063	3				10													
		<u>.</u>	-															
Cobbles, %	0				0 +	 1		0	01		0 1			1	-	10		100
Gravel, %	37				0.00	·		0			0.1							
Sand, %	60				AY	Fine	I	Mediu	um Coa	rse	Fine	Mediun	n	Coarse	Fine	Medium	Coarse	ble
Clay / Silt, %	3				CL			S	SILT			SAN	ND			GRAVE	L	Cob
		•			<u> </u>	•												
Client :			Marlet								Lab.	No :	21/	837		Hole II	D: B	H 01
Project :		Bal	lscadden, Ho	wth						S	Sample	No :	JO	Г08		Depth, r	n: 8	8.00
									-									

Material description :	slightly silty gravelly SAND
Pomerka :	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Kennarks.	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis																		
size, mm	passing	Diameter, mm	% passing	· ·	100																Π
100	100	0.0630																			
90	100	0.0200			90 -									+					\mathbf{X}		4
75	100	0.0060																			
63	100	0.0020			80																
50	100				00																
37.5	100																				
28	94.2				70 +																1
20	90.6			5																	
14	86.1			sing	60						+			+			\mathcal{H}	++++		┼┼╏┼┼	+
10	79.9			Pas																	
6.3	67.8			ge	50						+			+			\rightarrow				4
5.0	60			nta																	
2.36	45.5			ce	10											r					
2.00	43			P	40																
1.18	34.2																				
0.600	24.8				30 +																+1
0.425	19.7													X							
0.300	15.7				20									4							+
0.212	12.9																				
0.150	9.8				10	_					+		r								4
0.063	4																				
					0																Ц
Cobbles, %	0				0.001			0.0	01		(D.1			1			10			100
Gravel, %	57				_																-
Sand, %	39				AY	Fine]	Mediu	m Co	arse	Fine	N	Iedium		Coarse	Fine	Ν	Iedium	Coars	e g	oble
Clay / Silt, %	4				5			SI	LT				SAND					GRAVE		Ĉ	Ŝ
Client :			Marlet								La	b. No :	2	21/8	39			Hole ID	:	BH 02	2
Project :		Bal	lscadden, Ho	wth							Samp	le No :	J	TO	18		Ι	Depth, m	:	2.00)

Material description :	slightly silty very sandy GRAVEL
Domarka	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Kennarks .	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis														
size, mm	passing	Diameter, mm	% passing]	100 —												
100	100	0.0630]												1	
90	100	0.0200			90 -												
75	100	0.0060]													
63	100	0.0020]	80										X		
50	100				00												
37.5	100																
28	100				70												
20	96.4																
14	93.3			sing	60												
10	90.5			Pas													
6.3	83.9			ge	50 -								/				
5.0	78.4			nta													
2.36	69.8			rce	10												
2.00	67.5			Pe	40												
1.18	60.8]													
0.600	52.5]	30 —							$V \mapsto$					
0.425	46]													
0.300	36.2]	20 -												
0.212	28.7																
0.150	22.3				10 -					- I							
0.063	9									ľ							
					0												
Cobbles, %	0				0.001	1	_	0.01	-		0.1		1		10		100
Gravel, %	33				_												
Sand, %	59				AY	Fine	Me	edium	Coarse	Fine	N	Iedium	Coarse	Fine	Medium	Coarse	ple
Clay / Silt, %	9				b			SILT				SAND			GRAVE	L	Cob
-																	
·												-		,			
Client :			Marlet					┥┝		La	b. No :	21	/840		Hole ID): B	H 02
Project :		Ba	lscadden, Ho	owth						Samp	le No :	JC	DT21		Depth, m	ı: 5	5.00

Material description :	silty very gravelly SAND
Domarka :	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Kelliarks.	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis																		
size, mm	passing	Diameter, mm	% passing		100 ⊤																
100	100	0.0630																			
90	100	0.0200			90 +																
75	100	0.0060																			
63	100	0.0020			80															$I \mid \mid$	
50	100				00																
37.5	100																	\square	TIII		
28	85.6				70 +												\checkmark				
20	82.8																				
14	79.5			sing	60 +							+ + + +			\mathcal{H}			+++	++++		
10	76.7			Pas																	
6.3	75			ge	50 -									A							
5.0	73			nta										ľ I I							
2.36	68.9			ce	10																
2.00	67.9			Pe	40								1								
1.18	64.2											1									
0.600	60.1				30 +																
0.425	56.9																				
0.300	53				20 +										┼╏┼┤				++++		
0.212	48.5																				
0.150	44.2				10 -										┼┨┼┼			++			
0.063	34																				
					0																
Cobbles, %	0				0.00	01			0	.01		C).1			1			10		100
Gravel, %	32																			1	
Sand, %	34				AY		Fine	N	Iediu	um C	oarse	Fine	N	Iedium	Co	arse	Fine	I	Medium	Coarse	pple
Clay / Silt, %	34				5	5			S	SILT				SAND					GRAVEL	,	Ĉ
CI			16.1												1.10.4.1				11.1 15		1.00
Client :			Marlet	.1								Lat	5. No :	2	1/841				Hole ID	: B	H 02
Project :		Ba	Iscadden, Ho	wth								Sampl	le No :	J	5129				Depth, m	: 1.	3.00

Material description :	slightly sandy slightly gravelly silty CLAY
Domorka -	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Kelliarks.	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis																									
size, mm	passing	Diameter, mm	% passing		100 T																	-1	ŦП					1
100	100	0.0630																Ш		1								
90	100	0.0200			90 +	_									_	_		++									╉┼┼┤	_
75	100	0.0060																Ш										
63	100	0.0020			80	_																						
50	100				00													X]
37.5	100																	/										
28	100				70 +	-										-	1											-
20	100																	Ш										
14	100			sinç	60 +										-	-	\mathbb{H}	╉				+					╉┼┼┽	-
10	100			Jas													/	Ш										
6.3	99.2			ge F	50 -	-										_/		4				\square					▋	_
5.0	99.2			ntaç														Ш										
2.36	97.7			LCe	10													Ш										
2.00	97			Pe	40 +	-										/												1
1.18	90.4														ľ	′		Ш										
0.600	78.3				30 -										-/1	-		╂										-
0.425	66.5													,	/			Ш										
0.300	49.8				20 +	-									_	_		╉		_							╏┼┼┼	-
0.212	34.7													ľ				Ш										
0.150	25.6				10 -	-							$\mathbf{\Lambda}$					4										_
0.063	8				10								Y					Ш										
																		Ш										
Cobbles, %	0				0 0	01				0.01			(0 1					1	-			1	0	•		1	1
Gravel, %	3				0.00	01				0.01														0				-
Sand, %	89				X		Fine	1	Med	ium	Coarse		Fine		M	ediur	n	С	oarse	F	ine	I	Medi	um	Coa	rse	ple	
Clay / Silt, %	8				CL					SILT						SAN	D						GR	AVEI			Cob	
		-																										
Client :			Marlet										Lal	b. N	0:		21	/83	3	Γ			Но	le ID	:	T	P 01	
Project :		Ba	lscadden, Ho	wth								S	amp	le N	0:		Μ	K0	1	F]	Dept	th, m	:	1	.00	
													1										-	,	•			

Material description :	silty slightly gravelly SAND
Demorks	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
RefilarKS :	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis																
size, mm	passing	Diameter, mm	% passing		100 —														
100	100	0.0630]													Λ		
90	100	0.0200			90														
75	100	0.0060]															
63	100	0.0020]	80											1			
50	100				00														
37.5	100													/	1				
28	100			1	70														
20	97.4																		
14	93.2			sing	60		++	$\left \right \left \right $							$\mathbf{I} \rightarrow \mathbf{I}$	+			
10	89.1			Pas									X						
6.3	85.2			ge	50 -		+						1			+			
5.0	82.1			nta															
2.36	76.8			rce	10														
2.00	75.1			Pe	40														
1.18	67.5											Y I I							
0.600	56.6]	30														
0.425	49.3]															
0.300	41.8]	20											+	-		
0.212	33.9																		
0.150	28.3				10 -														
0.063	13]															
					0														
Cobbles, %	0				0.001		_	0.01	_	().1		1	1		10	-		100
Gravel, %	25				_														
Sand, %	62				AY	Fine	Μ	edium	Coarse	Fine	Μ	edium	Coar	se	Fine	Mediu	m C	oarse	ple
Clay / Silt, %	13				b			SILT				SAND				GRA	VEL		Cob
												-	10.0.1						
Client :			Marlet					┥┝		Lat	0. No :	2	/834			Hole	e ID :	T	<u>. 202</u>
Project :		Ba	Iscadden, Ho	owth						Sampl	e No :	N	IK06			Depth	n, m :	2	.00

Material description :	silty very gravelly SAND
Bomerice :	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Kelliarks.	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis																				
size, mm	passing	Diameter, mm	% passing		100 T	_																	
100	100	0.0630																				$V \mid \mid$	
90	100	0.0200			90 -				++++-	\rightarrow		+		-				+				1	
75	100	0.0060																					
63	100	0.0020			80																		
50	100				00														М				
37.5	100																	X					
28	100				70 +	-																	
20	92.7			5													И						
14	88.7			sin	60 -							+++				+	AII						
10	86.9			Pas												Λ							
6.3	81.9			ge	50 -					_		+		_	\rightarrow	41		_					
5.0	79.8			nta																			
2.36	75.6			srce	40	_																	
2.00	73.9			<u> </u>	40										/								
1.18	68.4													X									
0.600	57.5				30 +	-								71									
0.425	51.2																						
0.300	43				20 -	-							\mathbf{I}										
0.212	34.6												111										
0.150	28.5				10 -					_		ļ,		_									
0.063	13]																			
		1			0																		
Cobbles, %	0				0.0	01			0.01	1			0.1				1			1	0		100
Gravel, %	26									1						_		_		1			
Sand, %	61				AY	E	line	Μ	edium	n Coa	arse	Fir	ne	Me	dium		Coarse	Fii	ne	Med	ium	Coarse	bble
Clay / Silt, %	13					5			SIL	Τ.					SAND					GI	RAVEL		Ĉ
			16.1						_				1			1.10	2.5				1 15		
Client :			Marlet	.1					_				ab. N	0:	2	21/8	35			Ho	ble ID	:	<u>1P 03</u>
Project :		Ba	Iscadden, Ho	owth								Sam	ple N	0:	1	MK(04			Dep	th, m	:	2.00

Material description :	silty very gravelly SAND
Domorka -	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Kelliarks.	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

Chemical Testing In accordance with BS 1377: Part 3

Client	Marlet
Site	Balscadden, Howth
S.I. File No	5836 / 21
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email:info@siteinvestigations.ie
Report Date	6th July 2021

Hole Id	Depth	Sample	Lab Ref	pН	Water Soluble	Water Soluble	Loss on	Chloride	% passing	Remarks
	(mBGL)	No		Value	Sulphate Content	Sulphate Content	Ignition	ion	2mm	
					(2:1 Water-soil	(2:1 Water-soil	(Organic	Content		
					extract) (SO ₃)	extract) (SO ₃)	Content)	(water:soil		
					g/L	%	%	ratio 2:1)		
								%		
BH01	4.00	JOT04	21/836	8.57	0.119	0.109			91.9	
BH02	5.00	JOT21	21/840	8.57	0.120	0.081			67.5	
TP01	1.00	MK01	21/833	8.56	0.122	0.118			97.0	
TP02	2.00	MK06	21/834	8.49	0.117	0.088			75.1	
TP03	2.00	MK04	21/835	8.50	0.117	0.087			73.9	

		SHEAR	BOX TEST			
Test Method		BS 1377 : Pa	art 7:1990:Method	4		
Preparation procedure	Remoulded Material scre	with 2.5 kg ra eened on 2mr	nmmer at natural mois n sieve	sture content.		
Description	Reb/brown s	lightly silty s	lightly gravelly fine to	o coarse SAND.		
Weighings	Stage 1	Stage 2	Stage 3	Nominal Dime	nsions	
Wet soil gr	ms 345.2	344.5	344.9	Length	L1 mm	60
Dry soil gi	ms 160.9	160.5	160.7		L2 mm	60
				Area	A mm2	3600
Wet soil gi	ms 190.5	189.9	190.4	Height	H mm	25
Dry soil gi	ms 160.9	160.5	160.7	Volume	V cm3	90
Water gi	ms 29.7	29.4	29.7	Particle density	Mg/m3	2.70
Moisture Content (%)	18.4	18.3	18.5			
Bulk Density (Mg/m3)	2.12	2.11	2.12			
Dry density (Mg/m3)	1.79	1.78	1.79			
Voids ratio e	0.5104	0.5140	0.5121			
Degree of saturation (%)	97.5	96.2	97.3			
Final Details						
	Stage 1	Stage 2	Stage 3			
Normal Loads(kPa)	25	50	100			
Shear stress (kPa)	26.7	50.6	83.6			
Horizontal Displacement (mm	n) 1.743	2.227	2.039			
Vertical displacement (mm)	-0.169	0.015	-0.040			
Rate of displacement (mm/mi	n)	0.5000				
Date sampled	n/a			Peak		
Date received	25/06/2021		Cohesion c' (kPa)	10.2		
Date tested	08/07/2021		Friction angle phi'	36.1°		
100 -		l	Mohr Envelope			
100						
80 -						
e i						
0 0 0						
40 L						
יד אר גער אר						
je solution in the solution of						
ഗ 20 -						
0 +	20 40	60	80 100 120	140 160 180	200	
	20 40		Normal Stross (kBs)			
		r	Normal Suess (KPa)			
				SIL PROJECT	ID: 5836-21	
NM	Quick draine	ed shear box	in 60mm square	Job No. N	IMTL 3403	
TL	shear box			Borehole No. T	P01	
1	td Project	Balscadden	Howth	Sample No N	/K02	
Operator Sb	Checked	Nc	Approved Bc	Depth. 2	50m	

Appendix 4 Survey Data

Survey Data

Loodian	Irish Transve	rse Mercator	Elovation	Irish National Grid					
LOCATION	Easting	Northing	Elevation	Easting	Northing				
Boreholes									
BH01	728766.929	739199.986	19.98	19.98 328844.016					
BH02	728791.582	739163.531	19.58	328868.675	239138.431				
BH03	728739.243	739069.592	19.42	328816.326	239044.471				
Trial Pits									
TP01	728786.136	739106.863	29.92	328863.228	239081.751				
TP02	728754.368	739110.303	23.98	328831.454	239085.191				
TP03	728736.781	739134.128	20.47	328813.863	239109.021				

BYRNELOOBY

Appendix D – Drawings

01	18/02	GENE	RAL REVISIO	N				Al	NP	MR
00	26/11	WOR	IN PROGR	ESS				Al	NP	MR
Rev	Date			Descrip	tion			By	Chk	Арр
CLIE		ND	www UK	.byrni UA	ELOOB	Y.CO BAH	ом IRA	IN	KS	SA
	ALSC	AD[DEN GI	P3 L [.]	td.					
PRC B		AD[AD[DEN GI	P3 L [.]	td.					
PRC B	DJECT BALSC	AD[AD[DEN GI	P3 L [.]	td.					
PRC B DRA O	DJECT ALSC WING TI	AD[AD[TLE LL	DEN GI	P3 L [.] OAD PLAN	td.					
B PRC B DR4 O	DJECT DJECT ALSC WING TI VERA	AD[AD[TLE LL	DEN GI	P3 L ⁻ OAD PLAN DR	td.					
B PRC B DRA C STA	DJECT DJECT ALSC WING TI VERA TUS e: 26/11	AD[AD[TLE LL	DEN GI	P3 L ⁻ OAD PLAN DR	AFT	MON	Chk:	NP	Арр	: MR
B PRC B DRA O STA	DJECT DJECT DALSC WING TI VERA TUS e: 26/11 ject No:	AD[AD[TLE LL	DEN GI	P3 L ⁻ OAD PLAN DR	AFT	MON	Chk:	NP	App	: MR

GENERAL NOTES
1. DO NOT SCALE OFF DRAWING.
2. ALL DIMENSIONS IN MILLIMETERS UNLESS NOTED OTHERWISE.
3. ALL LEVELS IN METERS (MALIN HEAD) UNLESS NOTED OTHERWISE.
4. DESIGN IS SUBJECT TO DETAILED CONSTRUCTION DESIGN.
5. DRAWINGS TO BE READ IN CONJUCTION WITH BYRNELOOB' REPORT B1800-GEO-R001.
 PILES TO BE DESIGNED IN ACCORDANCE WITH I.S. EN 1997-1:2004 EUROCODE 7 GEOTECHNICAL DESIGN – PART 1 AND THE IRISH NATIONAL ANNEX TO I.S. EN 1997-1:2004.
 DESIGN IS BASED ON 1200mm DIAMETER HARD AND FIRM PILES FOR SECANT PILE WALL TYPE 01 AND BUTTRESS PILES – PILE TYPE 03. DESIGN IS BASED ON 900mm DIAMETER HARD AND FIRM PILES FOR SECANT PILE WALL FOR SECANT PILE WALL TYPE 02.
8. FIRM PILES FOR SECANT PILE WALLS TO EXTEND TO A MINIMUM OF 1m BELOW FORMATION LEVEL.
 BYRNELOOBY LAYOUT DRAWINGS ARE INDICATIVE ONLY. PILE SETTING OUT DETAILS SUBJECT TO ENGINEERS DETAILING.
01 18/02 GENERAL REVISION AI NP MR
00 26/10 WORK IN PROGRESS AI NP MR Rev Date Description By Chk App
BYRNELOOBY COM
IRELAND UK UAE BAHRAIN KSA
CLIENT BALSCADDEN GP3 Ltd.
PROJECT BALSCADDEN ROAD
DRAWING TITLE RETAINING WALL PILES SECTIONS AND DETAILS SHEET 01 OF 02
DRAFT
Date: 26/10/21 Scale: AS NOTED Drawn: AI Chk: NP App: MR Project No: Dra. No:
B1800 B1800-1002 01

<u>SECANT PILE WALL TYPE 02</u>

- 1. CONSTRUCT PILING PLATFORM AND FORM SUITABLE
- ACCESS FOR PILING RIG;
- 2. INSTALL FEMALE UNREINFORCED SECANT PILES TO DESIGN TOE LENGTHS;
- 3. INSTALL MALE REINFORCED SECANT PILES TO DESIGN TOE LENGTHS;
- 4. COMPLETE INITIAL EXCAVATION; 5. EXCAVATE TO UNDERSIDE OF TEMPORARY PROP;
- 6. INSTALL TEMPORARY RAKING PROP AND CONSTRUCT THRUST BLOCKS;
- 7. EXCAVATE TO FORMATION;
- 8. CONSTRUCT BASEMENT FLOOR SLAB, GROUND FLOOR SLAB AND FIRST FLOOR SLAB;
- 9. REMOVE TEMPORARY RAKING PROP;
- 10. CONSTRUCT CRIB WALL OR ARCHITECTURAL FEATURE IN FRONT OF SECANT PILE WALL.

GENERAL NOTES
1. DO NOT SCALE OFF DRAWING.
2. ALL DIMENSIONS IN MILLIMETERS UNLESS NOTED OTHERWISE.
3. ALL LEVELS IN METERS (MALIN HEAD) UNLESS NOTED OTHERWISE.
4. DESIGN IS SUBJECT TO DETAILED CONSTRUCTION DESIGN.
5. DRAWINGS TO BE READ IN CONJUCTION WITH BYRNELOOBY REPORT B1800-GEO-R001.
 PILES TO BE DESIGNED IN ACCORDANCE WITH I.S. EN 1997-1:2004 EUROCODE 7 GEOTECHNICAL DESIGN – PART 1 AND THE IRISH NATIONAL ANNEX TO I.S. EN 1997-1:2004.
 DESIGN IS BASED ON 1200mm DIAMETER HARD AND FIRM PILES FOR SECANT PILE WALL TYPE 01 AND BUTTRESS PILES – PILE TYPE 03. DESIGN IS BASED ON 900mm DIAMETER HARD AND FIRM PILES FOR SECANT PILE WALL FOR SECANT PILE WALL TYPE 02.
8. FIRM PILES FOR SECANT PILE WALLS TO EXTEND TO A MINIMUM OF 1m BELOW FORMATION LEVEL.
9. BYRNELOOBY LAYOUT DRAWINGS ARE INDICATIVE ONLY. PILE SETTING OUT DETAILS SUBJECT TO ENGINEERS
01 18/02 GENERAL REVISION AI NP MR 00 26/10 WORK IN PROGRESS AI NP MR
BYRNELOOBY
IRELAND UK UAE BAHRAIN KSA
CLIENT BALSCADDEN GP3 Ltd.
PROJECT BALSCADDEN ROAD
DRAWING TITLE RETAINING WALL PILES SECTIONS AND DETAILS SHEET 02 OF 02
DRAFT
Date: 26/10/21 Scale: AS NOTED Drawn: AI Chk: NP App: MR Project No: Drawn: AI Chk: NP App: MR
B1800 B1800-1003 01

IRELAND UK UAE BAHRAIN KSA

BYRNELOOBY

www.byrnelooby.com

Email: info@byrnelooby.com